

The Pioneer Robots

CSci 5551: Intro. To Robotics

Organizational Matters

• Undergraduate Robotics Lab:
– EE/CSci 2-140B

• Swipe U-Card to enter

• Robots are in cages, with color coded
padlocks.
– Re-charge the robots after use

• You will be assigned based on project
proposals.

Hardware

• Laptop w/ Ubuntu

• Internal Computer with Redhat

Pioneer 1 Pioneer 3

Access locally or on ad-hoc network “AIBONET”
Login: csci5551
Password: csci5551

The Pioneer Robot
• Serial Connection

– Send commands to microcontroller

• Differential Drive
– Control wheel velocities independently

• Maximum Speeds
– 0.6 m/s linear velocity

– 150 deg/s rotational velocity

• Wheel Encoders
– Resolution: 100 ticks/rev

– Give velocity measurements

• SICK Laser Scanner
– Details follow

• Additional Sensors:
• Sonar: 5 in front, 1 on each side
• Camera

SICK Laser Scanner

• Measures distance, e.g., to wall

• Connected via Serial (USB to Serial)

• Angular Resolution: 0.5 deg or 1 deg

• Distance Accuracy : +/-15 mm
– between 1 m to 8 m

• Unreliable:
– below 20 cm

– Near edges (+/- 90 deg)

– Power-Up Cycle: Scanner is ready when greenLED is on

• Connect using “Blocking Connect”

X-axis (0-deg)

Battery Power

• Power-on Cycle

– Main power switch controls sensors and robot

– Red/White Buttons for Motor Control

– Powering off the hardware at any point is ok

– Pioneer 3 w/ internal computer: sudo /sbin/shutdown –h now

• Battery Usage

– Monitor battery charge from Green/Yellow LED or LCD panel

– Do not let charge drop below 11 V (can monitor w/ software)

– Do not forget to turn off robot when finished

• Charging the Battery

– Full charge requires 24 hours

– Leave robots connected to charges while in cage

How to Break Your Hardware

• Pioneers with SICKs are Very Top-heavy
– Unstable, they can turn upside down :D

– Do not stop robot suddenly

– Do not operate the robot on an incline

– Monitor robot at all times during operation

• Wireless Antenna is Fragile
– Do not disconnect antenna from PCMCIA card

– Be extremely careful when removing the laptop
from the robot

Robot Programming

• Aria
– Provided by the manufacturer of Pioneers

– Based on Player/Stage

• Player/Stage
– General purpose robot programming

• ROS (Robot Operating System)
– Developed by Willow Garage

Robot Programming w/ Aria

• Installing Aria and MobileSim

• Running programs in MobileSim

• Aria API

• Setup laser scanner & robot

• Some example code

• Demo video

Installing Aria & MobileSim

• Download ARIA and MobileSim from
– http://robots.mobilerobots.com

• To install on Debian use:
– dpkg –i libaria_2.7.2_i386.deb
– dpkg –i mobilesim_0.5.0_i386.deb

• Default directory
– /usr/local/Aria
– /usr/local/MobileSim

http://robots.mobilerobots.com/
http://robots.mobilerobots.com/

Running MobileSim
• MobileSim –m <mapfile> -r <robot>

%MobileSim –m AMRoffice.map

• Run your own program
%./sickWander

ARIA:Software Interface to the Pioneers

• ARIA
– ActiveMedia Robotics Interface for Application
– Multi-threaded client/server API written in C++

• ARIA Directories
– Main: /usr/local/Aria
– Example: /usr/local/Aria/examples
– Documentation: /usr/local/Aria/docs/index.html

• Environment Variables
– LD_LIBRARY_PATH should include /usr/local/Aria/lib

• Or “sudo ldconfig /usr/local/Aria/lib/”
– ARIA should be set to /usr/local/Aria

%export ARIA=/usr/local/Aria

ARIA Class Overview

• Aria

• ArRobot

• ArDeviceConnection
– ArTCPConnection
– ArSerialConnection

• ArRangeDevice
– ArSick
– ArSonar

• ArAction
– ArArctionStallRecover
– ArActionBumpers
– ArActionAvoidFront
– ArActionAvoidSide

– …

• ArKeyHandler

Some Aria Methods

• void Aria::init()
– Performs OS-specific initializations.

– MUST be called before any other Aria functions.

• void Aria::shutdown()
– Shutdown all Aria/Process threads

• void Aria::setKeyHandler(ArKeyHandler *)
– Sets a key handler function

Some Aria Methods
• void ArRobot::addRangeDevice(ArRangeDevice *)

– Add a range device object to the current robot

– Sonars and Lasers must be added in this fashion

• void ArRobot::setDeviceConnection(ArDeviceConnection*)
– Sets the robot connection (sim or hardware)

• bool ArRobot::blockingConnect()
– Block until successful robot connection

• void ArRobot::addAction(ArAction *,int)
– Add an ArAction and set its priority

• void ArRobot::run()
– Start the robot running in this thread

Some Aria Methods
• void ArRobot::runAsync(bool)

– Start the robot running in its own thread
• void ArRobot::waitForRunExit()

– Blocks until the robot finishes running
• int ArRobot::lock()

– Lock the robot object (for thread-safe operation)
• int ArRobot::unlock()

– Unlock the robot object
• bool ArRobot::comInt(char, int)

– Poke the hardware (activate/deactivate sound/sonars,
etc…)

• void ArRobot::attachKeyHandler(ArKeyHandler *)
– Attach a key handler to a robot object

Control the Robot
• void ArRobot::setVel(double)

– Sets the linear velocity of the robot

• void ArRobot::setRotVel(double)
– Sets the rotational velocity of the robot

• void ArRobot::move(double)
– Moves the robot straight

• void ArRobot::setHeading(double)
– Sets “absolute” heading of the robot

• void ArRobot::setDeltaHeading(double)
– Sets “relative” heading of the robot

• bool ArRobot::isMoveDone(double)
– Is the last specified move done?

• void ArRobot::stop()
– Stops the robot

• All of these must be wrapped in lock() and unlock()

Setting up SICK
ArSick sick;
ArSerialConnection laserConn;
sick.configureShort(usingSim, ArSick::BAUD38400,
ArSick::DEGREES180, ArSick::INCREMENT_HALF);
sick.setDeviceConnection(&laserConn);
laserConn.open(“/dev/ttyUSB1”);
sick.runAsync();
sick.blockingConnect();

• Resolution
– ArSick::INCREMENT_HALF is 0.5 deg – 361 readings
– ArSick::INCREMENT_ONE is 1 deg – 181 readings

• usingSim is a boolean telling whether the simulator is
being used.

• Other parameters should not change.

Reading data from SICK
std::list<ArSensorReading *> *readings;
std::list<ArSensorReading *>::iterator it;
mySick->lockDevice();
readings = mySick->getRawReadings();
if (NULL!= readings) {

if ((readings->end() != readings->begin())) {
 for (it = readings->begin(); it != readings->end(); it++) {
 std::cout << (*it)->getRange() << " ";
 }
 std::cout << std::endl;
} else {
 std::cout << "(readings->end() == readings->begin())" << std::endl;
}

} else {
std::cout << "NULL == readings" << std::endl;

}
mySick->unlockDevice();

Example: Wander

• Uses actions to cause the robot to wander
around and not hit obstacles

• Serial ports must be changed to use USB
instead of default serial on Pioneers.
– Robot = /dev/ttyUSB0
– SICK = /dev/ttyUSB1

Example: Wander
// the serial connection (robot) Do not use Arsimpleconnector
ArSerialConnection serConn;
// tcp connection (sim)
ArTcpConnection tcpConn;
// see if we can get to the simulator (true is success)
if (tcpConn.openSimple()) {

// set the robots device connection to the sim
printf("Connecting to simulator through tcp.\n");
robot.setDeviceConnection(&tcpConn);

} else {
// we couldn't get to the sim, so set the port on the serial
// connection and then set the serial connection as the robots
// device
serConn.setPort(“/dev/ttyUSB0”);
printf(“Connecting to robot through serial.\n");
robot.setDeviceConnection(&serConn);

}
robot.blockingConnect()

Building Examples In Linux

• Make a directory in your account
% mkdir aria-examples

• Copy all examples in it
% cp $ARIA/examples/*.cpp aria-examples
% cp $ARIA/tests/*.cpp aria-examples
% cp $ARIA/advanced/*.cpp aria-examples

• Replace makefile and build them
% make

• Modify and experiment!

A Makefile for Aria
Show the makefile

Some Suggestions
• If an Aria program freezes or refuses to exit properly:

– CTRL-Z, then ‘killall –9 <progname>’

• For more elegant robot control, look at the
• ArAction class

– Multiple actions run in their own threads
– Can handle contingencies gracefully
– See the actionExample.cpp file

• Pioneer 1 motors must be enabled manually
– robot::comInt(ArCommands::ENABLE,1) does nothing

• Start project early
• Debug software issues with simulator
• Fine tune performance with hardware

Reference

• $firefox /usr/local/Aria/docs/index.html

• ActiveMedia
– http://robots.mobilerobots.com

• Standard template library
– http://www.sgi.com/tech/stl/

http://robots.mobilerobots.com/
http://www.sgi.com/tech/stl/

