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Abstract

One approach to improve the accuracy and robustness
of vision-aided inertial navigation systems (VINS) that em-
ploy low-cost inertial sensors, is to obtain scale information
from stereoscopic vision. Processing images from two cam-
eras, however, is computationally expensive and increases
latency. To address this limitation, in this work, a novel
two-camera alternating-stereo VINS is presented. Specif-
ically, the proposed system triggers the left-right cameras
in an alternating fashion, estimates the poses correspond-
ing to the left camera only, and introduces a linear inter-
polation model for processing the alternating right camera
measurements. Although not a regular stereo system, the
alternating visual observations when employing the pro-
posed interpolation scheme, still provide scale informa-
tion, as shown by analyzing the observability properties of
the vision-only corresponding system. Finally, the perfor-
mance gain, of the proposed algorithm over its monocular
and stereo counterparts is assessed using various datasets.

1. Introduction and Related Work
With the advent of augmented (AR) and virtual real-

ity (VR), the application of vision-aided inertial naviga-
tion systems (VINS) on mobile devices is becoming in-
creasingly popular. As a result, the research focus in
VINS is gradually shifting towards finding accurate, yet ef-
ficient, real-time solutions on resource-constrained devices.
Moreover, due to recent improvements in mobile proces-
sors (e.g., [3, 4]), and the availability of multiple cam-
eras in certain smart-phones (e.g., [5]) and AR-VR headsets
(e.g., [1, 2]), the interest in more robust multi-camera VINS
is also increasing.

Most existing tightly-coupled (i.e., jointly optimizing
over visual and inertial cost terms) VINS approaches focus
on monocular systems (e.g., [7, 10, 20, 22, 23]). Although
scale is observable in monocular VINS from the inertial
measurement unit (IMU)’s accelerometer, it is typically im-
precise as it requires accurately subtracting the dominant

Figure 1. Alternating-stereo VINS.

gravity vector from the noisy acceleration measurements.
Thus, additional scale information from stereo vision is key
to achieving higher accuracy. To this end, Manderson et
al. [18] propose an extension of PTAM [14] where the track-
ing and mapping pipelines are decoupled. On the other
hand, Leutenegger et al. [16] employ a keyframe-based si-
multaneous localization and mapping (SLAM) algorithm
that performs nonlinear optimization. Both [18] and [16],
however, operate in real-time only on desktop CPUs. To
the best of our knowledge, Paul et al. [21] presents the only
tightly coupled stereo VINS that operates in real-time on
a mobile processor. In particular, [21] extends the inverse
square-root sliding-window filter of [23] to two-camera sys-
tems and shows that the additional scale information ob-
tained from the stereo visual observations is a key factor
in improving accuracy and robustness. Due to the addi-
tional image-processing requirements for the second cam-
era, however, [21] is able to process key-frames at up to
10 Hz, which is not sufficient for tracking fast motions in
low-latency demanding applications such as VR and AR.

To address the limitations of existing stereo systems,
in this paper we present a novel alternating-stereo VINS
which has CPU requirements and latency comparable to
monocular VINS, yet provides scale information from the
visual observations, hence achieving accuracy and robust-
ness comparable to stereo VINS. In the proposed stereo
system, the left-right cameras are triggered in an alternat-
ing fashion (see Fig. 1), while estimating the poses of the
camera frame only when the left camera is active (i.e., ev-
ery other image of the pair). Since, the observations from
the right cameras do not correspond to any cloned frames,1

1By cloning we refer to the stochastic cloning as in the MSCKF [20]



a linear interpolation-based motion model is introduced to
relate them to their temporally neighbouring cloned frames.
By doing so, we are able to prove based on the observabil-
ity analysis that the visual observations, in conjunction with
the motion model, provide scale information. Additionally,
we show that our system operates in real-time on mobile
processors.

In summary, our main contributions are:

• We present the first alternating-stereo VINS, that com-
bines the low-latency of a monocular VINS with the
accuracy and robustness (from the visual scale infor-
mation) of a stereo system. This is achieved by in-
troducing an interpolation-based camera measurement
model to process the alternating-camera observations.

• We analyze the observability properties of the pro-
posed alternating-stereo system when employing the
interpolation scheme and show that the scale becomes
observable with only visual observations.

• We perform a detailed comparison between the pro-
posed system and its monocular and stereo counter-
parts, to assess its accuracy and robustness.

The rest of this paper is structured as follows: In Sec. 2,
we briefly review the key components of the proposed
VINS, highlighting the interpolation-based camera mea-
surement model for the alternating observations. Sec. 3 de-
scribes the image-processing front-end, and Sec. 4 presents
an overview of the estimation algorithm. In Sec. 5 we
present the observability properties of the proposed system,
in a vision-only setup, and show that scale becomes observ-
able when employing the proposed interpolation scheme.
Finally, experimental results over several datasets are shown
in Sec. 6, while Sec. 7 concludes the paper.

2. System Description

The proposed system comprises two forward facing
cameras with overlapping fields of view, where at each
time step only one of the left-right cameras is capturing im-
ages. Specifically, the cameras are triggered in an alternat-
ing fashion (see Fig. 1), while cloning only on the left cam-
era instants. The visual and inertial measurements are then
fused in a tightly coupled manner, following the sliding-
window approach of [23]. The key components of the pro-
posed system (see Fig. 2) are briefly described hereafter.

for maintaining past IMU poses in a sliding window estimator. The cloned
frames are analogous to key-frames in the computer vision literature.

Figure 2. Coordinate frames, where {I}, {CL}, {CR}, and
{G} are the IMU, left camera, right camera, and global frames,
respectively, (IqCL

, IpCL
) and (IqCR

, IpCR
) are the corre-

sponding left and right IMU-camera extrinsic parameters, and
(CLqCR

, CLpCR
) are the left-right camera-to-camera extrinsics.

2.1. System State

At each time step k, the sliding window estimator main-
tains the following state vector:

xk =
[
xTS xTF

]T
(1)

with xF =
[
xTCk−M+1

· · · xTCk
xTP xTEk

]T
(2)

where xS contains the currently estimated SLAM features
and xF comprises all other current states. Here xS =[
C0pT

f1
. . . C0pT

fn

]T
, with C0pfj , for j = 1, . . . , n, de-

noting the position of the feature fj in its first observing
camera frame {C0}. If the feature is, however, first ob-
served by the right camera {CR}, it is represented with re-
spect to the immediately previous left camera frame {CL}.
Next, xCp

, for p = k −M + 1, . . . , k, represents the state
vector corresponding to the IMU poses at time step p, with
M being the sliding-window size. Each pose state is de-
fined as xCp

=
[
IpqTG

GpTIp
]T

, where IpqG is the quater-
nion representing the orientation of the global frame {G}
in the IMU’s frame of reference {Ip}, and GpIp

is the po-
sition of {Ip} in {G}, at time step p. Next, the parameter
state vector is defined as xP =

[
IqTCL

IpTCL

]T
, where

(IqCL
, IpCL

) are the extrinsic parameters between {CL}
and {I}. The left-right camera-to-camera extrinsic param-
eters (CLqCR

, CLpCR
) are, however, assumed to be known

and, as shown in Sec. 5, contribute to the system scale. Fi-
nally, xEk

=
[
bTgk bTak

GvTIk
]T

contains gyroscope bgk
and accelerometer bak biases, as well as the velocity GvIk

of {Ik} in {G}, at time step k.
Lastly, we apply an additive error model for any quan-

tity x as x̃ = x − x̂, where x̃ is the error state and x̂ is
the state estimate employed for linearization. For a quater-
nion q, however, a multiplicative error model is employed
as q̃ = q⊗ q̂−1 '

[
1
2δθ

T 1
]T

, where ⊗ indicates quater-
nion multiplication and δθ is a minimal representation of
the attitude error.



2.2. Inertial Measurements and Cost Terms

Given inertial measurements uk,k+1 =
[
ωTmk

aTmk

]T
,

where ωmk
and amk

are gyroscope and accelerometer mea-
surements, respectively, a constraint between the consecu-
tive inertial states can be imposed (see [23]):

xIk+1
= f(xIk , uk,k+1 −wk,k+1) (3)

where xIk ,
[
xTCk

xTEk

]T , and wk,k+1 is the discrete-time
zero-mean white Gaussian noise affecting the IMU mea-
surements with covariance Qk. Linearizing (3) around the
state estimates x̂Ik and x̂Ik+1

yields the inertial cost term:

Cu(x̃Ik , x̃Ik+1
) = ||

[
Φk+1,k −I

] [ x̃Ik
x̃Ik+1

]
− (x̂Ik+1

− f(x̂Ik ,uk,k+1))||2Q′k (4)

where Q′k = Gk+1,kQkG
T
k+1,k, with Φk+1,k and Gk+1,k

being the corresponding Jacobians.

2.3. Visual Measurements and Cost Terms

The measurement model for the jth feature in the ith

(i = L : left) camera is

zi,jk = π(C
k+t
i pfj ) + ni,jk (5)

where π(.) is the camera projection model, C
k+t
i pfj is the

feature position expressed in the ith camera’s frame of ref-
erence at the image-acquisition time k+ t, and ni,jk is zero-
mean, white Gaussian noise with covariance σ2I2. Lin-
earizing (5) around the current state estimates yields:

z̃i,jk = Hi,j
x,k x̃F + Hi,j

f,k
C0 p̃fj + ni,jk (6)

where Hi,j
x,k and Hi,j

f,k are the corresponding Jacobians.
Stacking together all Nj observations to this feature yields:

z̃j = Hj
xx̃F + Hj

f
C0 p̃fj + nj (7)

The corresponding linearized cost term becomes:

Czj (x̃F ,
C0 p̃fj ) = ||H

j
xx̃F + Hj

f
C0 p̃fj − z̃j ||2σ2I2Nj

(8)

2.3.1 Interpolation-based Camera Jacobians

In the proposed system, the left-right cameras are triggered
in an alternating fashion, while cloning only when the left
camera is active. Thus, the Jacobians for the left camera
measurements are the same as those of a monocular system
(see [13] and (7)). On the other hand, since the poses corre-
sponding to the right camera time instants are not included
in the state vector, a motion model is needed to relate these
measurements to its adjacent cloned poses. For the motion
model, we choose not to involve the IMU measurements
since it requires including the accelerations and rotational

velocities in the state vector, consequently increasing the
memory and processing requirements. Instead, we employ
an interpolation-based model that avoids such issues, while
maintaining indistinguishable performance.

Specifically, assuming the sensor-pair moves on approx-
imately a straight line segment during the very small time
interval between two consecutive clones (∼ 60 msec), the
position of the IMU frame at the right camera time instant
k+ t is linearly interpolated from its two temporally neigh-
boring clone positions:

GpIk+t
= (1− λ)GpIk

+ λGpIk+1
(9)

where λ is the interpolation ratio. The IMU rotation from
time instant k to k+1 is defined as C(θk+1,k) =

Ik+1
G C

Ik
G CT .

Similarly, assuming a constant axis of rotation, the orien-
tation of {Ik+t} is then equivalent to rotating {Ik} about
λθk+1,k, i.e.,

Ik+t
G C =

Ik+t
Ik

C
Ik
G C = C(λθk+1,k)

Ik
G C (10)

By employing (9) and (10), we can express the right camera
measurements as:

zR,j
k = π(C

k+t
R pfj ) + nR,j

k

= π(
C

k+t
R

C0
CC0pfj − I

CR
CT IpCR

− C
k+t
R

G C(GpIk+t
− GpI0

) +
C

k+t
R

I0
CIpCL

) + nR,j
k

= π(ICR
CTC(λθk+1,k)

Ik
G C(I0G CT I

CL
CC0pfj

− (1− λ)GpIk
− λGpIk+1

+ GpI0

+ I0
G CT IpCL

)− I

CR
CT IpCR

) + nR,j
k (11)

where I
CR

C , I
CL

C
CL
CR

C and IpCR
, IpCL

+ I
CL

CCLpCR
.

Linearizing (11), the measurement model corresponding to
the right camera feature observations becomes:2

z̃R,j
k = Hj,k

π

(
Hj,k
f

C0 p̃fj +
[
Hj,k

pk+1
Hj,k

θk+1

] [Gp̃Ik+1

Ik+1 θ̃G

]
+
[
Hj,k

pk
Hj,k

θk

] [Gp̃Ik

Ik θ̃G

]
+
[
Hj,k

p0
Hj,k

θ0

] [Gp̃I0

I0 θ̃G

]
+
[
Hj,k

px
Hj,k

θx

] [Ip̃CL

I θ̃CL

])
+ nR,j

k (12)

= HR,j
x,k x̃F + HR,j

f,k
C0 p̃fj + nR,j

k (13)

where

Hj,k
π =

1

γ2j

[
γj 0 −αj
0 γj −βj

]
, C

k+t
R pfj ,

αjβj
γj


Hj,k

p0
= M , I

CR
CTC(λθ)

Ik
G C

Hj,k
θ0

= −MI0
G CT bICL

CC0pfj +
IpCL

c

Hj,k
pk+1

= −λM, Hj,k
pk

= (λ− 1)M

2We use IMU integration to find the linearization point as it provides a
higher accuracy state estimate as compared to interpolation.



Hj,k
θk+1

= Hθ , λI

CR
CT bC(λθ)

Ik
G Cξc

Hj,k
θk

= −Hθ
Ik+1
G C

Ik
G CT + I

CR
CTC(λθ)bIkG Cξc

Hj,k
px

= MI0
G CT − I

CR
CT

Hj,k
θx

= MI0
G CT bICL

CC0pfjc − I

CR
CT bIk+t

G Cξ − IpCL
c

Hj,k
f = MI0

G CT I

CL
C (14)

with b.c denoting the skew-symmetric matrix, θ , θk+1,k,
and ξ , I0

G CT I
CL

CC0pfj − GpIk+t
+ GpI0

+ I0
G CT IpCL

.
Note that, despite its more complicated expressions for

the Jacobians, (13) has identical structure to the linearized
measurement model in (6) corresponding to the left camera
feature observations. Thus, it can be employed with any
monocular VINS estimator (e.g., [23]).

2.3.2 Interpolation Ratio Computation

In our experiments, we employ different interpolation fac-
tors for the translation λt and rotation λθ terms, assuming
varying velocities. Specifically, from (9) and (10) we have:

GpIk+t
− GpIk

= λt(
GpIk+1

− GpIk
) (15)

Ik+t
G C = C(λθθk+1,k)

Ik
G C ≈ (I3 − bλθθc)IkG C

⇒ I3 −
Ik+t
G C

Ik
G CT = λθbθc (16)

where GpIk+t
and

Ik+t
G C are obtained from IMU inte-

gration. Then, λt and λθ are estimated in a least-squares
(LS) sense, i.e., λt =

bT
1 a1

bT
1 b1

and λθ =
bT

2 a2

bT
2 b2

, where

a1 , GpIk+t
− GpIk

,b1 , GpIk+1
− GpIk

,a2 ,[
A(1,2) A(1,3) A(2,1) A(2,3) A(3,1) A(3,2)

]T , and
b2 ,

[
B(1,2) B(1,3) B(2,1) B(2,3) B(3,1) B(3,2)

]T ,
with A = I3 −

Ik+t
G C

Ik
G CT and B = bθc.

Note that other higher-order interpolation schemes (e.g.,
B-splines [17], GP interpolation [6]) can also be employed,
but their gain in accuracy is negligible, as compared to lin-
ear interpolation, for short time duration and hence, does
not justify the processing overhead.

3. Image-processing Front-end
The proposed system extracts and tracks point features

on consecutive alternating images (see Fig. 1). The track-
ing algorithm is, however, indifferent to whether the im-
age is provided by the left or the right camera and pro-
cesses the alternating image stream as if they are coming
from a monocular system. Specifically, a descriptor-based
tracking-by-matching strategy (similar to [21]) is employed.
As a first step, a 3D-to-2D matching is performed against
the local SLAM map, followed by a gyro-aided (i.e., us-
ing a rotation-only prediction from the integrated gyroscope
measurements) 2D-to-2D matching to associate the remain-
ing features with the previous 2D feature tracks. Next,

outliers are rejected using the 2-pt RANSAC [15] and the
Mahalanobis distance test. The inlier tracks are then trian-
gulated, using all observations from all viewing cameras,
and processed by the estimator. After triangulation, out-
liers are rejected by checking both the individual and mean
re-projection errors for all observations in a track. Addi-
tionally, when right-camera measurements are present in a
track, if the track’s mean re-projection error is larger than
the corresponding left track error, it is considered to have
erroneous stereo associations and is marked as an outlier.

4. Estimation Algorithm
In what follows, we describe the main steps of the esti-

mation algorithm. At each time step k, the objective is to
minimize the cost term C⊕k = Ck−1 + Cu + CZ that con-
tains all available information so far, where Cu [see (4)]
represents the cost term arising from the IMU measurement
uk−1,k, CZ from the SLAM visual measurements, and Ck−1
from the prior information obtained from the previous time
step, with Ck−1(x̃k−1) = ‖Rk−1x̃k−1 − rk−1‖2, where
Rk−1 and rk−1 are the prior information factor matrix and
residual vector, respectively.

At each time step k, the current state vector x̃k−1 is first
propagated by appending a new pose state xIk [see (3)] to
it, as x	k =

[
xTk−1 xTIk

]T
. Following [23], the cost term,

which initially comprised only Ck−1, then becomes

C	k (x̃
	
k ) = Ck−1(x̃k−1) + Cu(x̃Ik−1

, x̃Ik) (17)

To maintain constant computational complexity, at each
time step k, the oldest clone x̃Ck−M

, and the extra IMU
states x̃Ek−1

from the previous time step are marginalized.
For marginalization, as in [23], a state permutation followed
by a QR factorization [11] is applied, with the resulting cost
term after marginalization being:

CMk (x̃Rk ) = min
x̃M
k

C	k (x̃
M
k , x̃

R
k ) =

∥∥RR
k x̃Rk − rRk

∥∥2 (18)

where x̃Mk are the marginalized states, x̃Rk are the remain-
ing states after marginalization [see (1)], while RR

k and
rRk are the corresponding upper-triangular information fac-
tor and residual, respectively. After marginalization, new
SLAM feature states xNS are added to the state vector as
xk =

[
xRk

T
xNS

T
]T

. The new SLAM feature observations
ZN and re-observations ZR of existing SLAM features are
then used to perform updates.

C⊕k (x̃k) = C
M
k (x̃Rk ) + CZ(x̃k) = ‖R⊕k x̃k − r⊕k ‖

2 (19)

where CZ(x̃k) = CZN (x̃k) + CZR(x̃
R
k ) =

∑NNS
j=1 Czj (x̃k) +∑NR

j=1 Czj (x̃
R
k ), with NNS and NR being the number of new

SLAM features and SLAM re-observations, respectively.



Figure 3. System setup, where for the ith time step {Ii}, {CLi},
and {CRi} denote the IMU, left camera, and right camera frames,
respectively, and fj , with j = 1, . . . , 5, are the features observed
by the active camera frames {CL1}, {CR2}, and {CL3}, the ob-
servations being L1zj , R2zj , and L3zj .

Finally, (19) is minimized with respect to the error state vec-
tor and the solution for x̃k is used to update the state.

min
x̃k

C⊕k (x̃k) = min
x̃k

‖R⊕k x̃k − r⊕k ‖
2 (20)

At the next time step k+1, a new clone pose will be added to
the sliding window and the same process will be repeated,
with x̂⊕k = x̂k + x̃k and R⊕k serving as the corresponding
prior state estimate and information factor, respectively.

5. Observability Analysis
In this section, we study the observability properties (i.e.,

gauge freedom analysis) of the linearized vision-only ver-
sion of the proposed system and show that compared to its
monocular counterpart, scale becomes observable. For sim-
plicity, we employ the minimal setup of Fig. 3, depicting 3
consecutive camera frames in a left-right alternating fash-
ion. Since we are considering a vision-only system, for the
purpose of the observability analysis, we address the case
where 5 static features comprise the scene and are detected
by all 3 consecutive camera frames. Furthermore, we as-
sume that the pose of the first camera frame is known and
all other frames are expressed with respect to it. Note that,
the extension of the following analysis to the general case
of m poses and n features is straightforward.

For easiness of presentation, we first study a monocu-
lar system and determine the unobservable direction cor-
responding to the scale. Then, we examine the proposed
alternating-stereo system and prove that the null direction
vanishes.

5.1. Monocular System

In the monocular system, the two left camera measure-
ments for the jth feature can be written as,

L1zj = π(CL1 pfj ) + nL1,j (21)
L3zj = π

(
CL3 pfj

)
+ nL3,j

= π
(

CL3
CL1

C
(

CL1 pfj − CL1 pCL3

))
+ nL3,j (22)

where CL1 pfj and CL3 pfj are the positions of the jth

feature in the left camera frames {CL1
} and {CL3

}, re-
spectively, nL1,j and nL3,j are zero-mean white Gaussian
noises, and (

CL3
CL1

C, CL1 pCL3
) is the pose of {CL3

} with re-
spect to {CL1}. Linearizing (21) and (22) yields:

L1 z̃j =
L1Πj f̃j + nL1,j (23)

L3 z̃j =
L3Πj

3Cf̃j − L3Πj
3Cp̃3

+ L3Πj
3Cbfj − p3c3CT θ̃3 + nL3,j (24)

where L3Πj and L1Πj are the Jacobians of the perspec-
tive projection functions, while we simplified notation, fj ,
CL1 pfj , p3 , CL1 pCL3

, and 3C ,
CL3
CL1

C = C(CL3θCL1
)

with θ3 , CL3θCL1
. From (23) and (24), the Jacobian cor-

responding to the error state x̃j =
[
p̃T3 θ̃T3 f̃Tj

]T
is,

Hj =

[
L1Πj 02x3

02x3
L3Πj

3C

] [
03 03 I3
−I3 bfj − p3c3CT I3

]
(25)

By stacking together the Jacobians for all five fea-
tures, from only the left camera, we get the Jacobian
H = DM corresponding to the error state x̃ =[
p̃T3 θ̃T3 f̃T1 f̃T2 f̃T3 f̃T4 f̃T5

]T
, where

D , BlkDiag(L1Π1,
L3Π1

3C, . . . , L1Π5,
L3Π5

3C)

M ,


03 03 I3 . . . 03

−I3 bf1 − p3c3CT I3 . . . 03

...
...

...
. . .

...
03 03 03 . . . I3
−I3 bf5 − p3c3CT 03 . . . I3

 (26)

The unobservable direction of the system corresponds to
the nullspace of the Jacobian matrix H. To analyze this
nullspace, we use the fact that the rank of the product of
two matrices D and M is given by (see (4.5) in [19]):

rank(DM) = rank(M)− dim(N (D) ∩R(M)) (27)

where R(.) and N (.) represents the range and nullspace of
a matrix, respectively. Hereafter, we first show that M is of
full column rank, using Gaussian elimination. Specifically,
subtracting every odd row from its next even row and re-
arranging the rows of M yields:

M→


−I3 bf1 − p3c3CT

−I3 bf2 − p3c3CT

−I3 bf3 − p3c3CT 015

−I3 bf4 − p3c3CT

−I3 bf5 − p3c3CT

015x6 I15

 (28)



Then, by negating the first block-row and adding it to the
next 4 block-rows we get,

M→


I3 bp3 − f1c3CT

03 bf2 − f1c3CT

03 bf3 − f1c3CT 015

03 bf4 − f1c3CT

03 bf5 − f1c3CT

015x6 I15

 (29)

Now, consider the 6x3 block[
(bf4 − f1c3CT )T (bf5 − f1c3CT )T

]T
. Here, in general,

each of the two block rows has rank 2, but since the features
f1, f4, and f5 are not colinear, the 2 block rows do not have
a common nullspace. In other words, the matrix formed
by these two blocks has full column rank. Therefore,
after applying appropriate Gaussian-elimination the block
becomes [I3 03]

T ; i.e.,

M→


I3 bp3 − f1c3CT

03 bf2 − f1c3CT

03 bf3 − f1c3CT 015

03 I3
03 03

015x6 I15

 (30)

This block is then used in subsequent Gaussian-elimination
to the 2nd column blocks to yield:

M→


I3 03

03 03

03 03 015

03 I3
03 03

015x6 I15

→
[

I21
09x21

]
(31)

Hence, M30x21 is a full column rank matrix of rank 21.
Now, D20x30 is a block diagonal matrix, where each di-

agonal block is of rank 2. So, D has a 10 dimensional
nullspace spanned by η1,j = [01x3 . . . fTj . . . 01x3]

T

and η2,j = [01x3 . . . (fj − p3)
T . . . 01x3]

T , where
j = 1, 2, . . . , 5.

From the expression of M in (26) and the basis
{η1,j ,η2,j}, j = 1, 2, . . . , 5, of the nullspace of D, it
can be shown that (proof omitted due to lack of space)
there exists only one linearly independent direction η in
N (D) ∩R(M), where3

η =

2∑
i=1

5∑
j=1

ηi,j = [fT1 (f1 − p3)
T . . . fT5 (f5 − p3)

T ]T

= M(:,1:3)p3 + M(:,7:9)f1 + . . .+ M(:,19:21)f5 (32)

Therefore, rank(H) = rank(M) − dim(η) = 21 − 1 =
20, and H has an one dimensional nullspace N (H) =

3Using MATLAB notations.

span([pT3 01x3 fT1 . . . fT5 ]T ), which is the unobservable di-
rection corresponding to scale (see [24]).

5.2. Alternating-Stereo System

In the alternating-stereo system, in addition to the left
camera observations in (21) and (22) for the jth feature, the
right camera also contributes a measurement:

R2zj = π
(
CR2 pfj

)
+ nR2,j (33)

with CR2 pfj = CRpCL
+

CR2
CL1

C
(

CL1 pfj − CL1 pCL2

)
,

where
CR2
CL1

C = CR
CL

C
CL2
CL1

C, CR2 pfj is the position of the
jth feature in the right camera frame {CR2}, nR2,j is zero-
mean white Gaussian noise, (

CL2
CL1

C, CL1 pCL2
) is the pose of

the corresponding left camera frame {CL2
} with respect to

{CL1
}, and (CR

CL
C,CRpCL) is the known left-right camera

extrinsics. Now, in the alternating-stereo system only left
camera frames are cloned.4 Hence, we introduce a linear
interpolation model, i.e.,

CL2
CL1

C = C(λθ3), CL1 pCL2
= λp3,

to relate the right camera measurements with the two
adjacent left clones.

R2zj = π(CRpCL
+ CR
CL

CC(λθ3)(fj − λp3)) + nR2,j (34)

Linearizing (34) yields:

R2 z̃j =
R2Πj

2RCf̃j − λR2Πj
2RCp̃3

+ λR2Πj
2RCbfj − p2c2CT θ̃3 + nR2,j (35)

where R2Πj is the perspective projection Jacobian, p2 ,
CL1 pCL2

, 2RC ,
CR2
CL1

C, and 2C ,
CL2
CL1

C. From (23), (35),
and (24), combining measurements from both left and right
cameras, the Jacobian corresponding to the error state x̃j is:

Hj =

 02x3 02x3 D1,j

−λD2,j λD2,jbfj − p2c2CT D2,j

−D3,j D3,jbfj − p3c3CT D3,j

 (36)

where D1,j , L1Πj , D2,j , R2Πj
2RC, and

D3,j , L3Πj
3C. By stacking together the Jacobians

for all five feature measurements, we get the Jacobian
H = DM corresponding to the error state x̃, where

D , BlkDiag(D1,1,D2,1,D3,1, . . . ,D1,5,D2,5,D3,5)

M ,



03 03 I3 . . . 03

−λI3 λbf1 − p2c2CT I3 . . . 03

−I3 bf1 − p3c3CT I3 . . . 03

...
...

...
. . .

...
03 03 03 I3
−λI3 λbf5 − p2c2CT 03 . . . I3
−I3 bf5 − p3c3CT 03 . . . I3


(37)

4Note that, if we cloned at every frame the alternating scheme will lose
scale. Specifically, it will introduce 2 additional block columns in the M
matrix [see (26)], resulting in dim(N (H)) = dim(N (D)∩R(M) = 1.



Similarly to the monocular system, it can be shown
that M45x21 is a full column rank matrix of rank 21 and
D30x45 has a 15 dimensional nullspace that is spanned by:
η1,j = [01x3 . . . fTj . . . 01x3]

T , η2,j = [01x3 . . . (fj −
p3)

T . . . 01x3]
T , and η3,j = [01x3 . . . (fj − λp3 +

u)T . . . 01x3]
T , where j = 1, 2, . . . , 5 and u ,

2RCT CRpCL
. In this case, it can be shown that there exists

no nonzero vector inN (D)∩R(M), i.e.,N (D)∩R(M) =
{045x1}. Therefore, rank(H) = rank(M) − 0 = 21, and
H30x21 has no nullspace. Since H has no null direction,
unlike the monocular system, scale becomes observable in
the proposed interpolation-based alternating-stereo system
with just the visual observations. This can be easily veri-
fied by multiplying the Jacobian H with the scale direction
[pT3 01x3 fT1 . . . fT5 ]T , and confirming that the result is not
zero, due to the fact that N (D) ∩R(M) = {045x1}.

To summarize, processing the alternating visual obser-
vations requires a motion model for describing the cam-
era poses between key-frames. The motion model along
with the stereo constraint allow us to acquire scale infor-
mation, whose accuracy depends on how well the motion
model approximates the device’s actual motion. In practice,
during the short time between frames, the assumptions of
smooth motion and small rotation typically hold and hence
the proposed linear interpolation model is adequate. Fi-
nally, we should note that the scale will be observable for
higher-order models too as the presence of the stereo base-
line CRpCL

in the nullspace η3,j of D, will prevent the ob-
servability matrix from losing rank.

6. Experimental Results

For our experiments, the wide stereo rig depicted
in Fig. 4 was used, which contains two global shutter
Chameleon-2 camera sensors with PT-02118BMP fixed-
focus, 165◦ field of view (FOV), fisheye lenses. The base-
line between the cameras is 19.3 cm and they capture
VGA-resolution images at 25 Hz. A commercial-grade In-
vensense MPU-9250 IMU is used to measure inertial data
at 100 Hz. The cameras are triggered in an alternating fash-
ion, using an Arduino Nano micro-controller, and are time-
synced with the IMU. The full pipeline runs in real-time on
the NVIDIA Jetson TK1 [3] board, which is equipped with
a Tegra TK1 mobile processor, featuring a Kepler GPU and
a quad-core ARM Cortex-A15 CPU.

In what follows, we present our evaluation results on
6 hand-held indoor sequences with varied motion profiles,
captured using the device described above. Furthermore,
we also present results for the 30 Hz EuRoC MAV [9]
datasets, which consist of 11 indoor sequences recorded on-
board a micro-aerial vehicle under various motion profiles
and scene illuminations. For assessing the positioning ac-
curacy, we compute the root mean square error (RMSE) of

Figure 4. Stereo device.

each trajectory against VICON ground-truth.

6.1. Configurations Considered

In Secs. 6.2 and 6.3, we evaluate the accuracy and
computational performance, respectively, of the proposed
alternating-stereo system against its monocular and stereo
counterparts. Since the proposed system performs image-
processing at f Hz (f = 25 Hz and 30 Hz for our and the
EuRoC datasets, respectively) and filter updates at f/2 Hz,
for a thorough comparison, we included monocular and
stereo systems operating at both f/2 Hz and f Hz. The
optimization window size, M is set to 10 for these compar-
isons. For the f Hz cases, however, using the same window
size usually reduces the baseline5 and thus does not always
guarantee better performance over its f/2 Hz counterparts.
Therefore, for fairness, we also included the f Hz monoc-
ular and stereo systems with M = 20 in our comparison.

6.2. Accuracy Comparison

The RMSE results for the aforementioned systems are
summarized in Fig. 5 with a box-and-whisker plot. As
expected, stereo achieves better performance than mono
and estimation accuracy usually improves with higher
image-processing frequency and optimization window size
(M = 20 vs. M = 10). The f Hz systems with M = 10,
however, do not necessarily achieve better accuracy than
their f/2 Hz counterparts, due to the smaller effective
baseline. As evident from Fig. 5, the proposed alternating-
stereo system always performs better than the M = 10
mono, while it either outperforms or is on par with the
M = 20 mono. Interestingly, the proposed system attains
better accuracy than even the f/2 Hz stereo. This is due to
the fact that besides providing scale and spanning the same
key-frames as the f/2 Hz stereo does, the alternating-stereo
has access to typically longer feature tracks (owing to the
f Hz feature tracking) and to additional feature observa-
tions from the alternating frames. The alternating-stereo
also exhibits similar or better performance than the f Hz,
M = 10 stereo, because of having comparable feature
tracks with a longer effective baseline. The M = 20 stereo,
however, performs the best, since it uses every frame as

5Baseline due to motion.



Figure 5. RMSE comparison between different configurations. f is the cloning frequency and M is the optimization window size.

key-frame, while maintaining similar feature tracks and
temporal span as the alternating-stereo. Note that compared
to the 30 Hz datasets, the 25 Hz datasets demonstrate
relatively lower gain from the interpolation model in the
alternating-stereo scheme. This is to be expected, since in
this case the system needs to interpolate through a longer
time interval (80 msec as compared to 60 msec) and hence
the linear approximation is less often valid.

Lastly, we assessed the impact of our proposed LS-based
interpolation ratio (see Sec. 2.3.2) over the time-based ap-
proach of [8, 12] and found our method to be 0.03 m more
accurate in terms of median RMSE.

6.3. Computational Performance

Table 1 compares the processing times of the proposed
system on the NVIDIA Jetson TK1 [3] with the afore-
mentioned mono and stereo systems. For brevity, only
the timing results from our 25 Hz datasets are shown. As
evident, compared to the mono systems, stereo requires
more than double the CPU to perform image-processing
due to the additional feature extraction, tracking, and
stereo-matching steps. In terms of filter update time, stereo
requires ∼ 1.3 times more CPU than mono, as it needs to
process additional feature observations from the second
camera. Furthermore, since the f Hz systems perform
image-processing and filter updates twice as often com-
pared to the f/2 Hz systems, their processing requirements
are also double. Lastly, doubling the optimization window
size M increases the filter update time by a factor of ∼ 2.8
and the total time by ∼ 1.4 times.

The proposed alternating-stereo system performs feature
extraction and tracking at f Hz and filter updates at f/2 Hz,
resulting in similar filter update time but almost double
image-processing time as compared to the f/2 Hz mono.

Nonetheless, since alternating-stereo does not require an ad-
ditional stereo-matching step, it still performs faster than
the f/2 Hz stereo. Lastly, we note that the proposed system
runs in real-time on the NVIDIA Jetson TK1; in-fact, be-
sides the f/2 Hz mono, it is the only other real-time system
in our comparison.

Table 1. Comparison: Timing Results (msec)

Pipelines Filter update Image-proc. Total pipeline
(per key-frame) (per key-frame) (per 1 sec data)

M
on

o f/2 Hz, M=10 14.06 30.23 666.75
f Hz, M=10 14.32 27.53 1264.20
f Hz, M=20 38.72 21.53 1728.49

St
er

eo f/2 Hz, M=10 17.81 71.89 1372.41
f Hz, M=10 18.77 67.18 2609.26
f Hz, M=20 52.81 72.99 3710.50

Alternating-stereo 11.16 50.38 977.60

7. Conclusion
In this paper, we present a novel alternating-stereo

VINS which enjoys the low latency of a monocular system,
while acquiring scale information from visual observations
analogously to a stereo system. To do so, we introduce an
alternating cloning strategy along with an interpolation-
based camera measurement model (that can be employed
by any visual-inertial estimator), for efficiently processing
the non-cloned camera observations. Additionally, we
analyze the observability properties of the proposed system
and show that scale becomes observable from the visual
observations under the employed interpolation-based
motion model. Finally, the paper provides accuracy com-
parison of the proposed VINS against its monocular and
stereo counterparts and shows that, in terms of estimation
accuracy, the alternating-stereo system either outperforms
or is on par with the monocular and stereo VINS that have
comparable or higher computational requirements.
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