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Abstract— In this paper, we address the problem of coop-
erative mapping (CM) using datasets collected by multiple
users at different times, when the transformation between the
users’ starting poses is unknown. Specifically, we formulate
CM as a constrained optimization problem, where each user’s
independently estimated trajectory and map are combined
in a single map by imposing geometric constraints between
commonly-observed point and line features. Furthermore, our
formulation allows for modularity since new/old maps (or parts
of them) can be easily added/removed with no impact on the
remaining ones. Additionally, the proposed CM algorithm lends
itself, for the most part, to parallel implementations, hence
gaining in speed. Experimental results based on visual and
inertial measurements collected from four users within two
large buildings are used to assess the performance of the
proposed CM algorithm.

I. INTRODUCTION

A robust and tractable solution to the large-scale 3D
mapping problem has many useful applications, such as
human (or robot) indoor navigation, augmented reality, and
search and rescue. Besides vision-only approaches, visual
and inertial (rotational velocity and linear acceleration) mea-
surements have also been used to create 3D maps (e.g., [1]),
though the emphasis is on how to efficiently process a single
dataset corresponding to all, or part, of an area of interest.
In many practical applications, however, the device used for
recording data (e.g., a cell phone or a wearable computer)
may not have sufficient resources (e.g., storage space or
battery) to collect data from a large area. Additionally, it
may not be convenient for a single user to navigate the entire
building at once. Furthermore, since existing algorithms [e.g.,
batch least-squares (BLS)] focus on creating a map out of
a single dataset, every time a part of the map changes,
or is deemed of insufficient quality or accuracy, the whole
mapping process needs to be repeated.

The aforementioned limitations motivate investigating co-
operative mapping (CM) methods which can process visual
and inertial data collected by multiple users at different times.
In particular, we are interested in the most general case where
the transformation between the users’ starting poses (position
and orientation) is not known.

Early work [2], as well as more recent cloud-based ap-
proaches (e.g., [3]), on CM focus on aligning the users’ in-
dividual maps but without estimating the resulting combined
map. In [4] and [5], all users’ poses and maps are optimized
by employing approximate algorithms such as the pose
graph [6] and PTAM [7], respectively. On the other hand, [8]
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and [9] propose a distributed CM algorithm, the DDF-SAM,
which creates constraints between multiple-user trajectories
based on commonly-observed features. Specifically, each
user summarizes its trajectory and non-common features by
marginalizing them, and sends the resulting inferred mea-
surements, relating only the commonly-observed features, to
its neighbors. Then, every user optimizes its own trajectory
and map by combining the received inferred measurements
from its neighbors with its local measurements. Note that
this is an approximate method, as the received inferred
measurements cannot be relinearized when a better estimate
is obtained through BLS iterations.

Furthermore, most works to date on localization and
mapping have focused on processing only point features
that are tracked through sequences of images. Line features,
especially those aligned with the cardinal directions of a
“Manhattan world”, provide additional attitude information.
In [10] and [11], both point and line features are used
for improving the localization and mapping accuracy of
filtering algorithms. In the context of BLS, [12] simulta-
neously estimates the camera’s motion and the surrounding
structure using point and line features. This method, however,
requires observing six lines (three parallel and three non-
parallel) in triplets of consecutive images. Additionally, the
proposed solution decouples the camera motion into two
rotations and two translations, then solves for each of them
successively, rendering it sub-optimal. When lines are used
for localization, line-loop-closure measurements are rarely
used in practice, with the exception of [13]. Specifically,
Zhang et al. [13] propose a method for detecting loop-
closure line measurements, but under the assumption that
the observed lines either reside within, or are perpendicular
to, the plane corresponding to the floor.

Our proposed algorithm introduces an efficient, high-
accuracy BLS solution that utilizes both consecutive and
loop-closure observations of point and line features. In
particular, the main contributions of this paper are:
• We formulate CM as a constrained optimization prob-

lem that is modular (i.e., maps or submaps can be added
or removed) and lends itself to parallel implementation.
In addition, the proposed algorithm is able to leverage
each individual user’s intermediate mapping results to
reduce the processing cost.

• We provide a BLS solution utilizing points, “free lines”
(lines not aligned with the cardinal directions of the
building), and “Manhattan lines” to improve the estima-
tion accuracy. Additionally, we provide a robust method



for detecting loop-closure line measurements.
• We validate our algorithm in two large-scale 3D exper-

iments using datasets collected from multiple mobile
devices. Additional results from various buildings and
conference sites are available through our online inter-
active visualization [14].

The rest of the paper is structured as follows: In Section II,
we define the CM problem and present an overview of our
approach. In Section III, we provide the parameterization and
measurement models for point, free-line, and Manhattan-line
features. In Section IV, we present the geometric constraint
that arises when two features, defined in two separate maps,
correspond the same physical point. In Section V, we briefly
review the BLS solution for a single user, explain our method
for finding the initial relative-pose estimate between users,
and present in detail our CM algorithm. In Section VI, we
thoroughly evaluate the proposed method, both in terms of
accuracy and computational complexity, and provide con-
cluding remarks in Section VII.

II. ALGORITHM OVERVIEW

Consider multiple datasets consisting of visual and inertial
measurements collected by several users with a camera and
an inertial measurement unit (IMU). We examine the most
general case, where the relative transformations of the users
are unknown, and no relative-pose measurements between
them are provided. Furthermore, we assume that there exist
enough (two or more) common point features between pairs
of users to determine the transformation between all maps.
Such a multi-user CM scenario is illustrated in Fig. 1.

The objective of this paper is to find a BLS solution over
all users’ trajectories and maps. Our algorithm comprises
three main steps:

1) Obtain a BLS solution for each individual user’s trajec-
tory and map independently, using measurements from
only their dataset.

2) Generate an initial estimate of the users’ relative poses,
using their observations of common point features.

3) Find the optimal BLS solution of all users’ trajectories
and maps utilizing all available sensor data, and the
constraints that arise from commonly-observed point
and line features.

Our formulation of the CM problem has two desirable
characteristics: (i) Each user’s dataset becomes a modular
component of the final solution. Thus, if a user’s dataset
contains unreliable measurements, or we need to extend
the map to a previously-unknown area, we can add or
remove users to the CM problem without recomputing all
BLS solutions or all initial relative-pose estimates; (ii) The
algorithm can reuse the result of each individual BLS when
generating the CM solution, leading to a substantial speed
up.

III. SYSTEM STATE AND MEASUREMENT MODELS

In this section, we first describe the cost function intro-
duced by the IMU measurements, and then present the fea-
ture parameterization and measurement model for processing
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Fig. 1. Non-common (stars) and common (triangles) point features, as well
as line features observed by one or more mobile devices.

point, free-line, and Manhattan-line features. Note that our
system state includes the trajectory and map of each user, the
transformation between users, and the orientation between
the user and the Manhattan world frames.

In the rest of the paper, we denote the position and
orientation of frame {F1} in frame {F2} as F2pF1 and F2

F1C
respectively. We also define [e1,e2,e3] = I3, where I3 is the
3×3 identity matrix.

A. IMU state and measurement model

The pose (position and attitude quaternion) and velocity of
the IMU-camera pair,1 as well as the IMU biases at time step
k+1, denoted by the 16×1 vector pk+1, can be computed
from pk by integrating the IMU’s rotational velocity and lin-
ear acceleration measurements, uk. This process is described
by the following equation [15], [16]:

pk+1 = g(pk,uk)+wk (1)

where g is the nonlinear function corresponding to the IMU
measurement model and wk is the IMU measurement noise,
which is assumed to be zero mean, Gaussian with covariance
Qk, computed through IMU characterization [17].

B. Point feature state and measurement model

By defining C j xPi as the position of a point feature with
respect to the first camera pose {C j} that observes it, the
camera {Ck} measures the bearing angle to the feature as:

Ck z = π

(
Ck pC j +

Ck
C j C

C j xPi

)
+nk (2)

where π represents the camera perspective-projection model
and nk is the measurement noise.

1To simplify the ensuing derivations, we assume the IMU and camera
are co-located. In our experiments, we include the IMU-camera extrinsic
calibration parameters (6 degrees of freedom transformations) of each user
in the BLS problem formulation and estimate them concurrently with the
trajectories and maps of the users.



C. Free-line feature state and measurement model

In this paper, we use the same 4 degrees of freedom (dof)
free-line parameterization as in [11]. Consider the line `̀̀i in
Fig. 2 which is first observed by camera {C j}. We define a
coordinate frame {Li} for this line whose origin, pLi , is the
point on the line at minimum distance, dLi , from {C j}, x-axis
is aligned with the line’s direction `̀̀i, and z-axis points away
from the origin of {C j}. Then, the line is represented with
respect to {C j} by the parameter vector C j xLi =

[
C j qT

Li
dLi

]T .
Defining

C j
Li C,C(C j qLi), the origin of the line frame in {C j}

can be written as C j pLi = dLi
C j
Li Ce3.

In the absence of noise, a line measurement sk in {Ck},
which is defined as 2 dof unit vector perpendicular to the
plane spanned by the line `̀̀i and the origin of {Ck}, imposes
two constraints on the line and the observing camera: sk is
perpendicular to both the line direction and the displacement
between the origins of {Ck} and {Li}, i.e.,

sT
k

Ck
C j C

C j
Li Ce1 = 0 (3)

sT
k

(
Ck
C j C

C j pLi +
Ck pC j

)
= 0 (4)

In the presence of noise, the measured normal vector is
s′k = C

(
s⊥k ,n1

)
C
(
s⊥⊥k ,n2

)
sk, where the rotational matrices

C
(
s⊥k ,n1

)
and C

(
s⊥⊥k ,n2

)
express the effect of the noise

perturbing the true unit vector sk about two axes s⊥k and
s⊥⊥k perpendicular to it by angles of magnitude n1 and n2,
respectively.

D. Manhattan-line feature state and measurement model

Manhattan lines are aligned with one of the building’s
cardinal directions, and thus have only 2 dof. Assuming
a line aligns with the x-axis of the Manhattan world {B}
(i. e., vi = e1), as in Fig. 2, the Manhattan line with
respect to its first observing camera {C j} is represented
by the parameter vector C j xV i =

[
θV i dV i

]T , where θV i is
the angle between C j pV i and the y-axis of the Manhattan
world (i.e., e2), and dV i is the distance between the origins
of {C j} and the Manhattan-line’s frame {Vi}. Using this
parameterization,C j pV i is expressed as:

C j pV i = dV i
C j
G CG

B C(cosθV ie2 + sinθV ie3) (5)

where G
B C is the rotation matrix expressing the orientation

of the Manhattan world frame with respect to the global
frame. Similar to (3) and (4), the geometric constraints
corresponding to Manhattan lines are:

sT
k

Ck
C j C

C j
G CG

B Ce1 = 0 (6)

sT
k

(
Ck
C j C

C j pV i +
Ck pC j

)
= 0 (7)

IV. COMMON-FEATURE CONSTRAINTS

In our problem formulation, if a feature is observed by
multiple users, we define it as a different one in each map
but ensure geometric consistency by imposing constraints
on the common features to be the same physical point or
line. In what follows, we present the geometric constraint
for common point, free-line, and Manhattan-line features.

Fig. 2. The parameterization and measurement of free lines (left) and
Manhattan lines (right).

A. Point-feature constraint

Consider a point feature xPi observed by users {G1} and
{G2}, and expressed as C j1 xPi and C j2 xPi with respect to the
first observing camera poses in the two users’ maps. The
geometric constraint between them is:

C j1 xPi −
C j1
C j2

CC j2 xPi −
C j1 pC j2

= 0 (8)

where
C j1
C j2

C and C j1 pC j2
are then expressed using the local

camera poses and the transformation between the two maps:
C j1
C j2

C =
C j1
G1

CG1
G2

C
C j2
G2

CT (9)

C j1 pC j2
=

C j1
G1

C
(

G1pG2 −
G1pC j1

+ G1
G2

CG2pC j2

)
(10)

B. Free-line-feature constraint

Consider a free-line `̀̀i observed by two users, and ex-
pressed with respect to the first observing camera poses
{C j1} and {C j2} in their maps, respectively. As evident from
Fig. 3, the common free line is represented in the two maps
using frames of different origins. For deriving the geometric
constraint between two free lines, we employ the following
relation between frames {C j1}, {Li1}, {C j2}, and {Li2}:

Li2 pLi1
=

C j2
Li2

CT
[

C j1
C j2

CT (C j1 pLi1
−C j1 pC j2

)−C j2 pLi2

]
(11)

where Li2 pLi1
= −dce1. To remove dc from (11), we define

E23 ,
[
e2 e3

]T and multiply with it both sides of (11) to
obtain the 2 dof constraint:

E23
C j2
Li2

CT
(

C j1
C j2

CT (C j1 pLi1
−C j1 pC j2

)−C j2 pLi2

)
= 0 (12)

Then, since the x-axes of frames {Li1} and {Li2} are both
defined according to the same line direction, we have the
additional 2 dof constraint:

E23

(
C j1
Li1

Ce1−
C j1
C j2

C
C j2
Li2

Ce1

)
= 0 (13)

C. Manhattan-line-feature constraint

The common Manhattan-line features also satisfy (11),
with the additional information that a Manhattan line is
aligned with one of the building’s cardinal directions. For
example, if the line’s direction is e1, we have:

C j2
V i2

CV i2 pV i1
=−dc

C j2
B Ce1 (14)

Then, similar to (12), the 2 dof translational common
Manhattan line constraint can be written as:

E23
C j2
B CT

(
C j1
C j2

CT (C j1 pV i1
−C j1 pC j2

)−C j2 pV i2

)
= 0 (15)

Note also that since the Manhattan lines align with the
building’s cardinal directions, the orientation constraint cor-
responding to (13) is automatically satisfied.



Fig. 3. Depiction of line constraints.

V. ALGORITHM DESCRIPTION

In what follows, we first briefly review the BLS method
for determining the trajectory and map of each user based on
only its own measurements, and then (Section V-B) describe
our approach to find an initial estimate for the relative poses
between users. Subsequently, we introduce our CM algorithm
in Section V-C.

A. Single-user batch least-squares

For the j-th user, computing the BLS estimate requires
minimizing the following non-linear cost function:

C j = ||p̄ j−g(p̄ j,u j)||2Q j
+
∣∣∣∣z j−h(p̄ j, f j,

G j qB)
∣∣∣∣2

R j
(16)

where the first term corresponds to the cost function arising
from IMU measurements [see (1)], while the second one
is due to visual observations of point [see (2)], free-line
[see (3)-(4)], and Manhattan-line [see (6)-(7)] features. Also
in (16), p̄ j denotes the user’s poses, f j is the vector of all
features, G j qB is the quaternion representing the orientation
between the user and Manhattan world frames, u j and z j

comprises all IMU and visual measurements, while Q j and
R j are the covariance matrices describing their measurement
noises.

The cost function (16) can be minimized by employing
Gauss-Newton iterative minimization. In particular, by ex-
pressing the error states of p̄ j, f j, and G j qB with p̃ j, f̃ j, and
G j θ̃B, respectively, and defining δx j ,

[
p̃T

j f̃T
j

G j θ̃ T
B

]T , we
have the linearized cost function:

C ′j = ||J jδx j−b j||2 (17)

where J j and b j are the Jacobian and residual. In each Gauss-
Newton iteration, (17) is solved very efficiently by using
the Cholmod algorithm [18]. Specifically, defining G j as
the Cholesky factor of the Hessian, i.e., G jGT

j = JT
j J j, we

minimize (17) with respect to δx j as follows:

JT
j J jδx j = JT

j b j⇔G jGT
j δx j = JT

j b j

⇔ G jδy j = JT
j b j, with δy j = GT

j δx j (18)

which involves consecutively solving two triangular systems.
Once δx j is computed, it can be used to update the estimates
for p j, f j, and G j qB, and initiate a new Gauss-Newton iteration
until convergence

(
||δx j||< size(δx j)×10−5

)
.

Note that the Gauss-Newton minimization described above
can be performed by each user independently (in parallel or
at different times) to compute an estimate of each user’s
trajectory, p̄ j, and map, f j, expressed in its own reference
frame. These estimates and the Choleskey factor, G j, will be
provided to the CM algorithm (see Section V-C) for merging

all maps. Before computing the merged map, however, an
initial estimate of the transformation between the users’
reference frames is needed. This initialization process using
visual observations of common, amongst the different users’
maps, point features is described in the next section.

B. Initial estimate of the users’ relative poses

As shown in [19], when using visual and inertial measure-
ments, the roll and pitch angles of each user’s orientation are
observable in the inertial frame of reference. Therefore, the
transformation ( G1

G2
C and G1pG2 ) between any two users has 4

dof: One corresponding to their relative yaw angle and three
corresponding to their relative position.

When two users observe the same point feature xPi , i =
1, . . . ,M, the geometric constraint between them is:

G1 xPi =
G1pG2 +

G1
G2

CG2xPi (19)

where G1xPi ,
G2xPi are the point feature xPi ’s 3D positions

expressed in users’ frames {G1} and {G2}, respectively, and
G1
G2

C = Rotz (φ12).
As we prove in [20], two common points suffice for

computing φ12 and G1pG2 . Furthermore, we employ the two-
point minimal solver in conjunction with RANSAC [21] for
detecting outliers. Lastly, we use all inliers to find in closed-
form the least-squares relative transformation between maps.
Due to space limitations, we refer to [20] for the details of
the initialization process.

C. Cooperative mapping

In this section, we first present the standard BLS formu-
lation of the CM problem and then reformulate it as an
equivalent constrained optimization problem, whose solution
takes advantage of the problem’s structure.

1) CM problem formulation: As previously mentioned,
linking the different users’ maps requires using observations
of common features. One way to achieve this would be
to modify the camera measurement model for all three
types of features to explicitly consider the transformation
between the reference frames of the users observing the same
features. This new camera model, for any common feature
observation, can be written in a compact form as:

zc = s(xa, fc,xτ)+nc (20)

where xτ is a vector of size 4(N−1) comprising the pairwise
transformations between users computed as described in
Section V-B, xa =

[
p̄T

1 ,
G1qT

B , . . . , p̄T
N ,

GN qT
B

]T is the vector
comprising all users’ poses and their orientations in the
Manhattan world, nc is the corresponding measurement noise
of covariance Rc. Additionally, we split the set of features,
f, into two subsets, fc and fa, comprising the set of features
observed by only one or multiple users, respectively.

Following this formulation and renaming as C i the cost
function of each user [see (16)] after removing the cost terms
involving common features [see (20)], CM requires solving:

x∗a, f
∗
a, f
∗
c ,x
∗
τ = argmin

(
N

∑
i=1

C i + ||zc− s(xa, fc,xτ)||2Rc

)
(21)



To improve the modularity and efficiency of CM, we
employ the following theorem:

Theorem 1: The optimization problem (21) is equivalent
to the following constrained optimization problem:

x∗a, f
∗
a, f
∗
c1
, . . . , f∗cN

,x∗τ = argmin
N

∑
i=1

Ci (22)

s. t. κ(xa,xτ , fci , fc j) = 0, i, j = 1, . . . ,N, i 6= j (23)

where Ci denotes the cost function for user i [see (16)], fci is
defined as the subset of fc observed by user i, and κ denotes
common-feature constraints as defined in (8), (12), (13), and
(15).

Sketch of the proof: Substituting the constraint (23) in (22)
and rearranging terms results in (21). �

As explained in Section V-C.3, the constrained formulation
of (22)-(23) has several advantages over that of (21).

2) CM solution: Since the cost function of (22) is nonlin-
ear, we employ Gauss-Newton iterative minimization [22].
At each iteration, we focus on the following (linearized)
constrained BLS problem:

δx∗τ ,δx∗1, . . . ,δx∗N = argmin
N

∑
i=1
||Jiδxi−bi||2

s. t.
N

∑
i=1

Aiδxi +Aτ δxτ = r (24)

where δxi is the error state of user i (comprising p̄i, fci , fai ,
and GiqB), δxτ is the error state of xτ , while Ji and bi are
the corresponding Jacobian and residual of Ci in (22). Ai,
Aτ , and r are the Jacobians (corresponding to xi and xτ ) and
residual of the constraints, respectively.

The KKT optimality conditions [23] for (24) are:

JT
i (Jiδxi−bi)+AT

i λ = 0, i = 1, . . . ,N
N

∑
i=1

Aiδxi +Aτ δxτ − r = 0 (25)

AT
τ λ = 0

where λ is the Lagrange-multiplier vector.
To simplify notation, in what follows, we present our

algorithm for solving (25) for the case of two users, while
its extension to three or more users is straightforward.

Writing (25) in a compact form yields:

JT
1 J1 AT

1
JT

2 J2 AT
2

A1 A2 Aτ

AT
τ


︸ ︷︷ ︸

HCM

δx1
δx2
λ

δxτ

=

JT
1 b1

JT
2 b2
r
0

 (26)

Note that due to the zeros in the (3, 3) and (4, 4)
block-diagonal elements, HCM is not positive definite. Thus,
Cholesky factorization cannot be applied. Although other
methods, such as diagonal pivoting [24], can be employed
to solve (26), we propose an alternative approach that takes
advantage of HCM’s structure and the Cholesky factors
previously computed by each user as follows:

Theorem 2: HCM can be factorized into the product of a
lower-triangular and an upper-triangular matrix as:

HCM =

G1
G2

KT
1 KT

2 T11
T21 T22




GT
1 K1

GT
2 K2
−TT

11 TT
21

−TT
22

 (27)

where G1 and G2 are the Cholesky factors of the users’
Hessian matrices JT

1 J1 and JT
2 J2 respectively, and T11 and

T22 are lower-triangular matrices.
Proof: Multiplying the two triangular matrices in (27), and

employing the structure of HCM in (26) yields the following
system of equations:

GiKi = AT
i , i = 1,2 (28)

T11TT
11 =

2

∑
i=1

KT
i Ki (29)

T11TT
21 = Aτ (30)

T22TT
22 = T21TT

21 (31)
To find the K1, K2, T11, T21, and T22 that satisfy (28)-

(31), we first compute Ki, i = 1,2, by solving a linear
equation corresponding to each of the columns of Ki [see
(28)].

Defining K =
[
KT

1 KT
2
]T , it is easy to show that

∑
2
i=1 KT

i Ki = KT K is a positive definite matrix. Thus, we
compute T11 as the Cholesky factor of KT K that satisfies
(29). Given T11, we determine T21 using triangular back-
substitution according to (30).

Lastly, T21TT
21 is also positive definite, and thus T22 is

selected as the Cholesky factor of T21TT
21 [see (31)]. �

Once all the block matrices in (27) are obtained, (26)
is efficiently solved by employing two back-substitutions
involving triangular matrices.

Now, we briefly discuss the computational complexity of
computing each block in (27). The Cholesky factors Gi
do not require any calculation in the first Gauss-Newton
iteration, because they have already been computed by each
user. Starting from the second Gauss-Newton iteration, the
Gi matrices need to be re-computed, which can be done in
parallel, at a cost that depends on the structure of the Hessian.

Computing the Ki matrices involves triangular back-
substitution according to (28), which has low computational
cost for two reasons: (i) the Ai matrices are very sparse (less
than 0.01% nonzero elements); (ii) each column of the Ki
matrices can be computed in parallel. Note also that since the
number of columns of K is equal to the number of commonly
observed feature constraints, the time for computing K grows
linearly with the number of constraints.

The T11 matrix is the Cholesky factor of KT K. Although
K is sparse (about 1% nonzero elements), since it is typically
a tall matrix, KT K is generally a small dense square matrix
with size equal to the number of commonly-observed feature
constraints. Thus, computing T11 has cubic processing cost
with respect to the number of constraints.

Lastly, both T21 and T22 are very small matrices, and
take little time to compute. Once all the block matrices are
computed, solving the linear system requires only two sparse
back triangular substitutions.

As we will show in the experimental results, computing
K and KT K are the most computationally demanding parts



of our CM algorithm, and the time they take depends
on the number of commonly-observed feature constraints.
Fortunately, both these two operations are parallelizable.

3) CM solution advantages: Formulating and solving CM
as a constrained optimization problem has the following
advantages:
Parallelization: In (21), due to the features observed by
multiple users, many of the off-diagonal blocks in the result-
ing Hessian matrix are nonzero. Thus, there is no straight-
forward way to parallelize computations. In contrast, and as
described above, most operations required for solving (22)
are parallelizable (e.g., computing the Ki and Gi matrices).
This is of particular importance when mapping very large
areas such as airports, museums, shopping malls, etc.
Modularity: In (21), the feature measurement model
changes if a common feature is already defined in another
map, in which case the transformation between the maps
needs to be involved. In contrast, in (22) common features
always use the same measurement model as other features
and the transformation between maps is never required,
hence the feature measurement model is uniform. Moreover,
adding or removing users’ trajectories and maps does not
affect the Jacobian matrices of the other users. Instead, we
simply add the corresponding constraints. This is especially
convenient when expanding the map or updating pre-existing
maps.
Efficiency: The Cholesky factor of each individual user’s
Hessian matrix can be reused in (22) to speed up processing.
Moreover, the partitioning of (22) reduces the memory
requirements of the Cholesky factorization.

VI. EXPERIMENT RESULTS

In what follows, we briefly describe the experiment setup,
show the estimated trajectories and maps, compare our result
to ground truth, and provide computation times for each
step of the algorithm. An interactive visualization of the
experimental results is available online [14].

A. Dataset collection
The visual and inertial measurements used in our CM tests

were collected using a Project Tango developer phone and
tablet [25].2 Greyscale images, with resolution 640× 480,
were saved at 15 Hz, along with consumer-grade, MEMS-
based, IMU data at 100 Hz. Two buildings were mapped,
the Keller Hall and Walter Library at the University of
Minnesota (UMN) campus. Keller Hall contains four datasets
of approximately 1300, 1000, 800, and 500 m, while Walter
Library comprises of four datasets with length about 1000,
400, 400, and 100 m.

B. Data preparation and initial estimate
First, each user solves its own single-map (SM) estimation

problem via BLS to determine its own trajectory and map
based on the following information:

(SM 1) An initial estimate for its trajectory and map: In
our case, this is computed using a variant of the multi-state

2We use the Tango devices for collecting visual and inertial data; all
algorithms described in this paper were implemented at UMN.

constrained Kalman filter (MSC-KF), based on [19]. Each
MSC-KF operates on the IMU measurements and feature
tracks collected by each user. Feature tracks correspond to
Harris-corners [26] extracted from each image and tracked
using the Kanade-Lucas-Tomasi (KLT) algorithm [27]. The
subset of these feature tracks that pass the 2pt-RANSAC
[28], are used by the MSC-KF to improve the estimated
trajectory of each user. These tracks, however, are not used
to detect loop closures.

(SM 2) Point-feature loop-closure detection (intra-
dataset): To determine if a user has revisited an area, we fol-
low a bag-of-words approach using ORB feature descriptors
[29] and employ our implementation of Nistér’s vocabulary
tree [30]. These matches are confirmed after they pass a
3pt+1-RANSAC [31] geometric-consistency test.

(SM 3) Line tracking: Line segments are extracted from
images using the Line Segment Detection (LSD) algorithm
[32]. The line tracking process first creates hypotheses for
each 3D line’s orientation and position by considering all
possible line vector pairs

(
1si,

2s j
)

between the first and the
second image. Then, line segments from the third image are
used to determine valid hypotheses. Line segment triplets that
satisfy the three-image constraints are then considered as a
line track, and are used to estimate a 3D line’s parameters
(see [20] for details). Finally, the line segments from image 1
that were not assigned to any 3D lines are discarded, while
the unassigned line segments from images 2 and 3 are used to
create new hypotheses that are validated using the segments
from image 4. Note that the line segments of image 4 are
first tested against the current set of tracks, and the remaining
segments are used for hypothesis testing. This process is then
repeated as new images are considered.

Once the line-tracking process is completed, the subset
of line tracks corresponding to the cardinal directions of
the building are identified using a RANSAC-based vanish-
ing point estimator [33]. Lastly, we use the trajectory and
line estimates of each user’s BLS to find loop-closure line
features by accepting free or Manhattan lines at poses where
loop-closure point features have previously been found. In
particular, if any of these free or Manhattan lines are close to
each other (i.e., the difference of their distance and direction
parameters are within one degree and 15 cm, respectively),
they are accepted as loop-closure measurements.

Once each user has solved its own SM problem, they
communicate to the CM their estimated trajectories, maps,
Cholesky factors, and all available visual-inertial measure-
ments. At this point, another step of preprocessing is required
to compute the following quantities:

(CM 1) Inter-dataset point-feature loop-closure detec-
tion: To achieve this, we follow the same procedure as in
(SM 2), and determine the matched images and correspond-
ing common landmarks across all datasets.

(CM 2) Inter-dataset line-feature loop-closure detec-
tion: We follow a process similar to (SM 3) using the
resulting CM trajectory.

(CM 3) Relative transformation initialization: Once
common point features are identified, we follow the approach
of Section V-B to compute an initial estimate for the un-



Fig. 4. Trajectories of all users in Keller Hall using points-only versus
points, free lines, and Manhattan lines.

Measurements used Points only Points and lines
Average target distance error 61 cm 57 cm

Percent error 0.81% 0.69%

TABLE I
PAIRWISE DISTANCE ERROR BETWEEN APRILTAGS IN KELLER.

known 4-dof transformation between user pairs.
Given the above information, we finally employ the

algorithm described in Section V-C to solve the CM as
a constrained optimization problem. The results from our
experiments are summarized in the following section.

C. CM algorithm evaluation

In Figs. 4 and 5, we present the estimated trajectories of
all users for the Keller Hall and Walter Library datasets,
respectively. The achieved accuracy of the CM algorithm
can be qualitatively assessed by examining the x− z view
of Fig. 5, and observing that the z (height) estimated for all
users’ trajectories remains about the same despite the fact
that they have travelled for hundreds of meters across multi-
ple floors. Moreover, the effect of using free and Manhattan
lines can be observed in Fig. 4, where the yaw error of the
trajectory is corrected.

In addition to the qualitative results, we present a ground-
truth comparison for Keller Hall. Specifically, we placed four
AprilTags [34] in the far corners of a single floor within
the building and used the building’s blueprints to find the
true distance (ground truth) between any pair of AprilTags.
Then, to compute the estimated distance between AprilTags,
we employ the PnP algorithm of [35] to find an observed
AprilTag’s position expressed with respect to the camera’s
frame, and use the CM estimate of the camera frame to
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Fig. 5. Trajectories of all users in Walter Library using points, free lines,
and Manhattan lines. Each user’s trajectory is depicted with a different color.

Calculation and Time
G 9.7 s T21 48.4 ms

T11 4.1 s KT K* 255.1 s / 45.1 s
T22 0.2 ms Back-solve 320.0 ms

Time per iteration 261.5 / 51.5 s (6 required)
* Times reported from sequential / parallel implementations.

TABLE II
COOPERATIVE MAPPING PROCESSING TIMES FOR KELLER DATASETS.

express the AprilTag with respect to the global frame. Lastly,
we average the estimated positions of each AprilTag across
all observations and compute the norm of their differences.3

Errors in the pairwise distance between AprilTags found
from this method when using only points versus when using
points, free lines, and Manhattan lines are reported in Table I.

Next, we present the times to compute our CM result
on a desktop computer with an Intel R© Xeon R© E5-1650 v2
processor (3.5 GHz). Our implementation uses the Cholmod
[18] algorithm from SuiteSparse to find Cholesky factors,
while back-substitution is performed using the Eigen library
[36]. In the four Keller Hall datasets, we processed 131,010
points, 1,589 free lines, and 2,582 Manhattan lines. Of these,
1,823 points, 8 free lines, and 33 Manhattan lines were
common to two or more datasets. The CM processing times
are shown in Table II. As previously mentioned, computing
KT K is the most computationally demanding part of the
algorithm taking 255.1 s for sequential processing. Exploit-

3The distance from the camera to the AprilTag is relatively small as
compared to the distance between AprilTags (about 0.3 m compared to
over 80 m) so any error in the PnP estimate will negligibly affect the result.



ing the inherent parallelism of our proposed algorithm, the
time for computing KT K is reduced to 45.1 s using Intel’s
"Threading Building Blocks" library [37] (i.e., 17.7% of the
sequential processing time).

VII. CONCLUSION

In this paper, we introduced a cooperative mapping (CM)
algorithm for combining visual and inertial measurements
collected using mobile devices by multiple users at different
times across large indoor spaces. We considered the most
general case, where the users’ relative transformation is
unknown. Our formulation of CM as a Batch Least Squares
(BLS) constrained-optimization problem offers significant
advantages when processing multiple maps: (i) Modularity
as maps (or submaps) can be added and removed with
minimal effort; (ii) Computational gains as partial results
regarding the trajectory and map of each user can be re-
used; (iii) Significant speed ups from parallelizing not only
each users’s BLS-solution, but also many of the proposed
CM algorithm’s steps. Two large-scale CM experiments were
conducted demonstrating the performance of the proposed
algorithm in terms of accuracy and processing speed when
using point, free-line, and Manhattan-line visual features.
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