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Resource-Aware Large-Scale Cooperative 3D
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Abstract—In this paper, we address the problem of cooperative
mapping (CM) using datasets collected by multiple users at dif-
ferent times, when the transformation between the users’ starting
poses is unknown. Specifically, we formulate CM as a constrained
optimization problem, where each user’s independently estimated
trajectory and map are merged together by imposing geometric
constraints between commonly-observed point and line features.
Additionally, we provide an algorithm for efficiently solving the
CM problem, by taking advantage of its structure. The proposed
solution is proven to be batch-least-squares (BLS) optimal over all
users’ datasets, while it is less memory demanding and lends itself
to parallel implementations. In particular, our solution is shown
to be faster than the standard BLS solution, when the overlap
between the users’ data is small. Furthermore, our algorithm is
resource-aware as it is able to consistently trade accuracy for
lower processing cost, by retaining only an informative subset of
the common-feature constraints. Experimental results based on
visual and inertial measurements collected from multiple users
within large buildings are used to assess the performance of the
proposed CM algorithm.

Index Terms—cooperative mapping, 3D mapping, visual
and inertial sensor fusion, constrained optimization problem,
resource-aware system

I. INTRODUCTION AND RELATED WORK

Creating an accurate 3D map within a GPS-denied area
is required for many applications, such as human (or robot)
indoor navigation and localization, augmented reality, and
search and rescue. A camera and inertial measurement unit
(IMU) sensor pair, typically found on most modern mobile
devices (e.g., smart phones, tablets, wearable computers),
is ideal for such task due to their complementary sensing
capabilities. To date, most research has focused on how to
efficiently create a map from a single dataset (e.g., [1], [2],
[3], [4]) using batch least-squares (BLS) methods. In many
practical applications, however, the device used for recording
data may not have sufficient resources (e.g., storage space or
battery) to collect data covering a large area. Additionally, it
may not be convenient for a single user to navigate the whole
building at once. Furthermore, any time a portion of the map
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changes, or is deemed of insufficient quality or accuracy, the
mapping process must be repeated.

The aforementioned limitations motivate investigating co-
operative mapping (CM) methods that can process visual and
inertial data collected by multiple users at different times. In
particular, we are interested in the most general case where
the transformation between the users’ starting positions and
orientations (poses) is not known.

Early work on CM [5], as well as more recent distributed
approaches [6], determine the relative pose between users by
aligning their individual maps without estimating the resulting
combined map. In these methods, a global optimization over
all users’ measurements is missing, resulting in a non-optimal
solution. Other approaches employ relative pose measurements
among the users (or robots) to determine the transformation
between their trajectories [7] and maps [8], [9]. Such methods
require the users to visit the same location at the same time for
capturing inter-user measurements, which greatly reduces their
applicability to general use cases. To overcome this limitation,
recent works employ observations of common features for
merging the users’ maps. Depending on the allocation of
the processing requirements between the users and a central
computer, these approaches can be classified into decentralized
and centralized.

In decentralized methods, each user creates a merged map
independently using both its own measurements and those
received from other users. Specifically, in DDF-SAM [10],
each robot summarizes its mapping data by first marginalizing
its trajectory and non-common features, and then sending
to its neighbors the computed inferred measurements relat-
ing only the commonly-observed features. Since marginal-
ization is computationally expensive, alternative exact and
approximate summarization approaches are provided in DDF-
SAM 2.0 [11]. Note that [10] and [11] are approximate
methods, as the received inferred measurements cannot be re-
linearized when a better estimate is obtained through BLS
iterations. Furthermore, since mapping is a computationally-
demanding process and each user creates a merged map on its
own, all users need to carry powerful processors to perform
many, often redundant, computations.

In contrast, centralized methods maintain a low-processing
cost in the user end, by allocating expensive computations to
a central computer (e.g., cloud server). In particular, Riazuelo
et al. present an extension to PTAM [12] in which each user
optimizes over only its own trajectory assuming the map is
known, while the cloud server optimizes over the merged
map assuming all users’ trajectories to be known [13]. In [14]
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and [15], each user runs onboard visual odometry and sends
the estimated trajectory to a server. The server then computes
the BLS solution over only the users’ trajectories [14] or a
selective set of users’ poses and their observed landmarks [15].
The centralized algorithms of [13], [14], and [15] combine
datasets collected by multiple users into a single one, and
then solve the resulting BLS problem. Such strategy has two
limitations: (i) It employs the standard BLS formulation for
solving the CM problem (i.e., they express all variables of
interest w.r.t. a single common frame of reference), and does
not explicitly consider one of the problem’s key characteristics:
When collaboratively mapping a building, users typically
collect data from different areas with a small overlap so as
to maximize coverage. These datasets, in general, comprise
a limited number of common features and thus constraints
between their trajectories. In contrast, the user poses within
each dataset are "strongly" constrained by not only loop-
closure measurements but also IMU data and feature tracks
across consecutive images. In our CM formulation, we take
advantage of this structure by expressing the variables of each
map in its own frame while ensuring coherence between the
maps by imposing common-feature constraints; this leads to
significant speedups or memory savings. (ii) [13], [14], [15]
employ approximations (e.g., removing all features from the
estimated state as in [14]), whose impact on processing is
difficult to assess. Specifically, the BLS solving time depends
not only on the problem size and number of non-zero elements,
but also on the structure of the Hessian matrix. Therefore,
since reducing the number of variables, and thus processed
measurements, will significantly affect the Hessian’s structure,
one cannot tractably predict the processing savings. Instead in
our work, we first present the exact CM solution and then offer
an adjustable approximation which selects and applies a subset
of the common-feature constraints, while optimizing over all
variables of interest. As shown in Sect. V-C, our formulation
allows quantifying the expected gain in speed as a function of
the number of common-feature constraints.

Furthermore, most works to date on localization and map-
ping have focused on fusing inertial measurements with only
point-feature observations extracted and matched across se-
quences of images. In such systems, the rotation around
the gravity direction (yaw) has been shown to be unobserv-
able [16]. To obtain additional attitude information, line fea-
tures, especially those aligning with the cardinal directions of
a “Manhattan world”1, have been used together with point fea-
tures. Specifically, both point and line features were employed
for improving the localization and mapping accuracy of vision-
only [17], and visual-inertial [18], [19] filtering algorithms. In
the context of BLS, [20] simultaneously estimates the camera
motion and the surrounding structure using point and line
features. This method, however, requires observing six lines
(three parallel and three non-parallel) in triplets of consecutive
images. Additionally, [20] decouples the camera motion into
two rotations and two translations, and solves for each of them
successively, thus resulting in a sub-optimal estimate. When

1The Manhattan world assumption states that the world is built on a
Cartesian grid and hence all the surfaces are aligned with three dominant
perpendicular directions.

lines are employed for localization and mapping, line-loop-
closure measurements are rarely used in practice, with the
exception of (to the best of our knowledge) [21] and [22].
Specifically, Lee et al. [21] use line features for loop-closure
detection, but not as measurements for estimation. On the other
hand, Zhang et al. [22] propose a method for utilizing loop-
closure line measurements, but under the limiting assumption
that the observed lines either reside within, or are perpendic-
ular to, the plane corresponding to the floor.

Our proposed centralized CM algorithm provides a solution
that is mathematically equivalent to the BLS solution, takes
advantage of the problem structure to gain in efficiency, and
utilizes both consecutive and loop-closure observations of
point and line features to achieve high accuracy. Specifically,
we formulate CM as a constrained optimization problem, in
which the cost function is expressed as the summation of the
cost functions from all users, while the constraints express
the geometric relationship between the features commonly
observed by two or more users. In particular, the main contri-
butions of this paper are:

• The proposed CM formulation is modular (i.e., maps or
submaps can be added or removed), lends itself to parallel
implementation, and the solution is memory efficient. In
addition, the proposed algorithm is able to leverage each
individual user’s intermediate mapping results to reduce
the processing cost.

• Our CM formulation allows for consistently2 trading
estimation accuracy for computational-cost savings by ap-
propriately reducing the number of commonly-observed-
feature constraints.

• We utilize points, “free lines” (lines not aligned with
the cardinal directions of the building), and “Manhattan
lines” to improve the estimation accuracy. Additionally,
to the best of our knowledge, we are the first to detect and
apply loop-closure line measurements in a visual-inertial
mapping system.

• We quantitatively validate our algorithm in large-scale
3D experiments using datasets collected from multiple
mobile devices. Additional results from various buildings
and conference sites are available through our online
interactive visualization [24].

A previous, shorter version of this paper was presented
at [25]. As compared to [25], this paper presents the
commonly-observed feature sparsification technique that en-
ables the proposed CM algorithm to trade estimation accuracy
for computational savings. Additionally, we provide a thor-
ough experimental evaluation of the CM algorithm’s process-
ing cost and memory requirements, as well as a comparison
to the standard BLS solution.

The rest of the paper is structured as follows: In Sect. II, we
define the CM problem and present an overview of our pro-
posed algorithm. In Sect. III, we provide the parameterization
and measurement models for point, free-line, and Manhattan-
line features. In Sect. IV, we present the geometric constraints

2As defined in [23], a state estimator is consistent if the estimation errors
are zero-mean, and the estimated covariance is not smaller than the true
covariance.
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that arise when two features, defined in two separate user
maps, correspond to the same physical point or line. In Sect. V,
we briefly review the BLS solution for a single user, explain
our method for finding the initial relative-pose estimate be-
tween users, and present our efficient CM algorithm in detail.
In Sect. VI, the proposed method is thoroughly evaluated both
in terms of accuracy and processing cost. Concluding remarks
and future directions of research are provided in Sect. VII.

II. ALGORITHM OVERVIEW

Consider multiple datasets consisting of visual and inertial
measurements collected by several users with a camera and an
IMU. We examine the most general case, where the relative
transformations of the users are unknown, and no relative-pose
measurements between them are provided. Furthermore, we
assume that there exist enough (two or more) common point
features between pairs of users to determine the transformation
between all maps. Such a multi-user CM scenario is illustrated
in Fig. 1.

The objective of this work is to find a BLS solution over
all users’ trajectories and maps. Our algorithm comprises three
main steps:

1) Obtain a BLS solution for each individual user’s trajec-
tory and map independently, using measurements from
only their dataset.

2) Generate an initial estimate of the users’ relative poses,
using their observations of common point features.

3) Find the optimal BLS solution of all users’ trajectories
and maps utilizing all available sensor data, and all, or
a subset of, the constraints that arise from commonly-
observed point and line features.

Our formulation of the CM problem has three desirable
characteristics: (i) Each user’s dataset becomes a modular
component of the final solution. Thus, if a user’s dataset con-
tains unreliable measurements, or we need to extend the map
to a previously-unknown area, we can remove or add users
to the CM problem without recomputing all BLS solutions or
all initial relative-pose estimates; (ii) The algorithm can reuse
the result of each individual BLS when generating the CM
solution, leading to processing savings; (iii) The CM algorithm
provides a convenient mechanism for trading estimation accu-
racy for computational-cost savings, by reducing the number
of constraints imposed by commonly-observed features.

III. SYSTEM STATE AND MEASUREMENT MODELS

In this section, we first describe the system states, and
then present the measurement models for processing IMU data
and visual observations to point, free-line, and Manhattan-line
features.3

For the remainder of the paper, we denote the position
and orientation of frame {F1} in frame {F2} as F2 pF1 and
F2
F1C, respectively, where C is a 3×3 rotation matrix. We also
define [e1,e2,e3] = I3, where I3 is the 3× 3 identity matrix.
For the reader’s convenience, we provide a summary of this
nomenclature in the end of the paper.

3Note that CM is agnostic to the method employed for finding these feature
measurements. Our visual-processing pipeline is detailed in Sect. VI-A.

{G3}

{G2}

{G1}

Fig. 1: Non-common (stars) and common (triangles) point
features, as well as line features observed by one or more
mobile devices.

A. System State

Our CM system maintains the following state vector:
x =

[
1xT

u · · · NxT
u xT

τ

]T

where jxu, j = 1, . . ., N, denotes the state vector corresponding
to user j, and xτ is the transformation between different users’
global frames of reference. Furthermore, jxu is defined as:

jxu =
[

jp̆T jfT jqT
B

]T (1)

where jp̆,
[

jp̆T
1 · · · jp̆T

K

]T , jp̆k, k = 1, . . ., K, represents the
user’s pose along with their velocity and IMU biases at time
step k [see (3)], jf is the vector of all point, jxPi , free-line,
jxLi , and Manhattan-line, jxV i , features defined as
jf =

[
jxT

P1
· · · jxT

PN p
jxT

L1
· · · jxT

LNl

jxT
V 1
· · · jxT

V Nv

]T

and jqB is the quaternion representation of the user’s orien-
tation in the Manhattan world. Defining the z axis of the
Manhattan world frame to align with the gravity direction,
jqB denotes a time-invariant yaw rotation of angle jαB, i.e.,

jqB =
[
0 0 sin(

jαB
2 ) cos(

jαB
2 )
]T

(2)

Additionally, we assume the IMU and the camera are co-
located to simplify the ensuing derivations. In our experiments,
we estimate the IMU-camera extrinsic calibration parameters
(6 dof transformation) of each user concurrently with their
trajectories and maps.

Note that the IMU and feature measurement models em-
ployed for each user are similar. For this reason, we drop the
user index when describing them in the following section.

B. User Pose State and IMU Measurement Model

An IMU (i.e., gyroscope and accelerometer) provides the
user’s rotational velocity, ωωωm, and linear acceleration, am, con-
taminated by white Gaussian noise and time-varying biases.
To model the IMU propagation process, we define the user’s
(augmented) pose at time step k as:

p̆k =
[

Ck qT
G bT

gk
GvT

Ck
bT

ak
GpT

Ck

]T (3)
where Ck qG is the orientation of the global frame, {G}, in the
IMU’s frame of reference, {Ck}, GpCk and GvCk are the position
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and velocity of {Ck} in {G}, and bgk and bak are gyroscope
and accelerometer biases, respectively.

The continuous-time IMU propagation model describing the
time evolution of the user’s pose state is:

Cq̇G(t) =
1
2

ΩΩΩ(ωωωm(t)−bg(t)−ng(t))CqG(t)
Gv̇C(t) = C(CqG(t))T (am(t)−ba(t)−na(t))+ Gg
GṗC(t) = GvC(t)

ḃa(t) = nwa

ḃg(t) = nwg (4)

where ΩΩΩ(ωωω) is defined as
[
−bωωωc ωωω

−ωωωT 0

]
and bωωωc represents

the skew-symmetric matrix of ωωω ∈R3, C(CqG(t)) denotes the
rotation matrix corresponding to CqG(t), ng and na are white
Gaussian measurement noise of ωωωm(t) and am(t), respectively,
while Gg denotes the gravitational acceleration in {G}. Finally,
nwa and nwg are zero-mean white Gaussian noise processes
driving the gyroscope and accelerometer biases bg and ba.

The corresponding discrete-time system is determined by
integrating (4) between time steps k and k+1, employing the
method described in [16], [26], and [27]. This process can be
described by the following equation:

p̆k+1 = g(p̆k,uk)+ζζζ k (5)
where g(p̆k,uk) is a nonlinear function corresponding to the
IMU measurement model, uk ,

[
ωωωT

mk
aT

mk

]T , and ζζζ k is
the IMU measurement noise, which is assumed to be zero
mean, Gaussian with covariance Qk, computed through IMU
characterization [28].

C. Point-feature Measurement Model

By defining the position of a point feature with respect to the
camera pose, {Cη}, that first observes it as Cη xPi , the camera
pose {Ck}, measures the bearing angle to the feature as:4

Ck z = π

(
Ck pCη

+
Ck
Cη

CCη xPi

)
+nk (6)

where π(
[
x y z

]T
) , 1

z

[
x y

]T represents the camera
perspective-projection model, nk is the measurement noise,
and Ck

Cη
C and Ck pCη

can be expressed as:
Ck
Cη

C =
Ck
G CCη

G CT (7)
Ck pCη

=
Ck
G C(GpCη

− GpCk) (8)

D. Free-line Feature State and Measurement Model

In this work, we use the same 4 dof free-line parameter-
ization as in [30]. Consider the line `̀̀i in Fig. 2 which is
first observed by camera pose {Cη}. We define a coordinate
frame {Li} for this line whose origin, pLi , is the point on the
line at minimum distance, dLi , from {Cη}, x-axis is aligned
with the line’s direction `̀̀i, and z-axis points away from the
origin of {Cη}. Then, the line is represented with respect to
{Cη} by the parameter vector Cη xLi =

[
Cη qT

Li
dLi

]T . Defining
Cη

Li C , C(Cη qLi), the origin of the line frame in the camera

4In our implementation, we employ the inverse-depth parameterization with
respect to the first observing camera so as to improve numerical stability and
also to more accurately represent the depth uncertainty [29]. For simplicity,
in the ensuing derivations, we use Cartesian coordinates.

Fig. 2: The parameterization and measurement of free lines
(left) and Manhattan lines (right).

pose {Cη} can be written as Cη pLi = dLi ·
Cη

Li Ce3, while the line
direction is `̀̀i =

Cη

Li Ce1.
In the absence of noise, any line measurement sk in frame
{Ck}, which is defined as a 2-dof unit vector perpendicular
to the plane passing through the line `̀̀i and the origin of
{Ck}, imposes two constraints on the line and the observing
camera: sk is perpendicular to both the line direction and the
displacement between the origins of {Ck} and {Li}, i.e.,

sT
k

Ck
Cη

CCη

Li Ce1 = 0 (9)

sT
k

(
Ck
Cη

CCη pLi +
Ck pCη

)
= 0 (10)

where Ck
Cη

C and Ck pCη
are expressed in terms of the global

poses of cameras {Cη} and {Ck}, as shown in (7)-(8).
In the presence of noise, the measured normal vector is
s′k = C

(
s⊥⊥k ,n2

)
C
(
s⊥k ,n1

)
sk, where the rotational matrices

C
(
s⊥k ,n1

)
and C

(
s⊥⊥k ,n2

)
express the effect of the noise

perturbing the true unit vector sk about two perpendicular axes,
s⊥k and s⊥⊥k , by angles of magnitude n1 and n2, respectively.

E. Manhattan-line Feature State and Measurement Model

Manhattan lines are aligned with one of the building’s cardi-
nal directions, and thus have only 2 dof. Assuming a line aligns
with the x-axis of the Manhattan world {B} (i.e., vi = e1), as
in Fig. 2, the Manhattan line with respect to its first observing
camera pose {Cη} is represented by the parameter vector
Cη xV i =

[
θV i dV i

]T , where θV i is the angle between Cη pV i

and the y-axis of the Manhattan world (i.e., e2), and dV i is the
distance between the origins of {Cη} and the Manhattan-line’s
frame {Vi}. Using this parameterization,Cη pV i is expressed as:

Cη pV i = dV i
Cη

G CG
B C(cosθV ie2 + sinθV ie3) (11)

where G
B C = C(GqB) [see (2)] is the rotation matrix expressing

the orientation of the Manhattan world frame {B} with respect
to the global frame {G}. Similar to (9)-(10), the geometric
constraints corresponding to Manhattan lines are:

sT
k

Ck
Cη

CCη

G CG
B Ce1 = 0 (12)

sT
k

(
Ck
Cη

CCη pV i +
Ck pCη

)
= 0 (13)

where Ck
Cη

C and Ck pCη
are defined in (7)-(8).

IV. COMMON-FEATURE CONSTRAINTS

In our problem formulation, if a feature is observed by
multiple users, we first define it as a different feature in each
user’s map but then ensure geometric consistency by imposing
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constraints on the common features to be the same physical
point or line. In what follows, we present the geometric
constraints for common point, free-line, and Manhattan-line
features.

A. Point-feature Constraint

Consider a point feature xPi observed by two users whose
global frames of reference are {G1} and {G2}, respectively,
and expressed as Cη1 xPi and Cη2 xPi with respect to the first
observing camera poses in the two users’ maps. The geometric
constraint between them is:

Cη1 xPi −
Cη1
Cη2

CCη2 xPi −
Cη1 pCη2

= 0 (14)

where
Cη1
Cη2

C and Cη1 pCη2
are then expressed as:

Cη1
Cη2

C =
Cη1
G1

CG1
G2

CCη2
G2

CT (15)

Cη1 pCη2
=

Cη1
G1

C
(

G1pG2 −
G1pCη1

+ G1
G2

CG2pCη2

)
(16)

Note that (15)-(16) involve the two camera poses (G1pCη1
,

Cη1
G1

C) and (G2pCη2
,

Cη2
G2

C), as well as the 4 dof transformation
(G1pG2 , G1

G2
C) between the two maps.

B. Free-line Feature Constraint

Consider a free-line feature `̀̀ observed by two users, and
expressed with respect to the first observing camera poses
{Cη1} and {Cη2} in their maps, respectively. As evident from
Fig. 3, the common free line is represented in the two maps
using frames of different origins. For deriving the geometric
constraint between two free lines, we employ the following
relation between frames {Cη1}, {Li1}, {Cη2}, and {Li2}:

Li2 pLi1
=

Cη2
Li2

CT
[

Cη1
Cη2

CT (Cη1 pLi1
−Cη1 pCη2

)−Cη2 pLi2

]
(17)

where Li2 pLi1
= −dce1. To remove dc from (17), we define

E23 ,
[
e2 e3

]T and multiply with it both sides of (17) to
obtain the 2 dof constraint:

E23
Cη2
Li2

CT
(

Cη1
Cη2

CT (Cη1 pLi1
−Cη1 pCη2

)−Cη2 pLi2

)
= 0 (18)

Then, since the x-axes of frames {Li1} and {Li2} are both
defined according to the same line direction, we have the
additional 2 dof constraint:

E23

(
Cη1
Li1

Ce1−
Cη1
Cη2

CCη2
Li2

Ce1

)
= 0 (19)

Lastly, by employing again (15) and (16) we can express the
constraints in (18) and (19) as a function of the two camera
poses and the transformation between the two maps.

C. Manhattan-line Feature Constraint

The common Manhattan-line features also satisfy (17), with
the additional information that a Manhattan line is aligned with
one of the building’s cardinal directions. For example, if the
line’s direction is e1, we have:

Cη2
V i2

CV i2 pV i1
=−dc

Cη2
B Ce1 (20)

Similar to (18), the 2-dof translational common-Manhattan-
line constraint can be written as:

E23
Cη2
B CT

(
Cη1
Cη2

CT (Cη1 pV i1
−Cη1 pCη2

)−Cη2 pV i2

)
= 0 (21)

Note also that since the Manhattan lines align with the
building’s cardinal directions, the orientation constraint cor-
responding to (19) is automatically satisfied and need not be
considered.

Fig. 3: Depiction of line constraints.

V. ALGORITHM DESCRIPTION

In what follows, we first briefly review the BLS method
for determining the trajectory and map of each user based
on only its own measurements, and then (Sect. V-B) describe
our approach to find an initial estimate for the relative poses
between users. Subsequently, we introduce our CM algorithm
in Sect. V-C and present a method for “sparsifying” (i.e., re-
ducing the number and thus spatial density of) the commonly-
observed-feature constraints in Sect. V-D.

A. Single-user Batch Least-squares

For a user j, computing the BLS estimate requires mini-
mizing the following non-linear cost function:

C j =
∣∣∣∣ jp̆−g( jp̆, ju)

∣∣∣∣2
jQ +

∣∣∣∣ jz−h( jxu)
∣∣∣∣2

jR (22)
where the first term corresponds to the cost function arising
from IMU measurements (5), while the second term is due
to visual observations of point (6), free-line (9)-(10), and
Manhattan-line (12)-(13) features. Also, in (22) jp̆ and jxu
denote the users’ poses and full state [see (1)], respectively,
ju includes all IMU measurements, jz comprises all visual
observations, jQ and jR are the covariance matrices of the
corresponding measurement noises.

The cost function (22) can be minimized by employing
Gauss-Newton iterative minimization. In particular, by denot-
ing the error states of jxu as δ jxu, in each Gauss-Newton
iteration, we have the linearized cost function:

C ′j =
∣∣∣∣J jδ

jxu−b j

∣∣∣∣2 (23)
where J j and b j are the Jacobian and residual, respectively.
Since matrix J j is typically of full column rank in a visual-
inertial mapping problem, a unique δ jxu can be solved ef-
ficiently by employing the Cholmod algorithm [31]. Specif-
ically, defining G j as the Cholesky factor of the Hessian,
i.e., G jGT

j = JT
j J j, we minimize (23) with respect to δ jxu

as follows:
JT

j J jδ
jxu = JT

j b j⇔G jGT
j δ

jxu = JT
j b j

⇔ G jδ
jyu = JT

j b j, with δ
jyu ,GT

j δ
jxu (24)

which involves consecutively solving two triangular systems.
Once δ jxu is computed, it is used to update the estimates for
jxu, and initiate a new Gauss-Newton iteration until conver-
gence

(
||δ jxu||< size(δ jxu)×10−5

)
.

Note that the Gauss-Newton minimization described above
can be performed by each user independently (in parallel or
at different times) to compute an estimate of each user’s state
jxu. These estimates and the Choleskey factor, G j, will be
provided to the CM algorithm (see Sect. V-C) for merging all
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maps. Before computing the merged map, however, an initial
estimate of the transformation between the users’ reference
frames is needed. This initialization process using visual
observations of common, amongst the different users’ maps,
point features is described in the next section.

B. Initial Estimate of the Users’ Relative Poses

In what follows, we first describe our algorithm for com-
puting the transformation between two users, which can be
used in a minimal solver in conjunction with RANSAC [32]
for outlier rejection and/or for finding an approximate least-
squares solution. Then, we explain our approach for computing
the transformation between all users.

1) Transformation between pairs of users: As shown
in [16], when using visual and inertial measurements, the roll
and pitch angles of each user’s orientation are observable in
the inertial frame of reference. Therefore, the transformation
between any two users’ global reference frames has four
dof: One corresponding to their relative yaw angle and three
corresponding to their relative position. By defining the two
users’ frames of reference as {G1} and {G2}, we seek to
estimate the position and orientation of {G2} with respect to
{G1}, denoted as G1pG2 and G1

G2
C, respectively. Note that G1

G2
C

corresponds to a rotation about the global z-axis, which is
aligned with gravity, and thus:

G1
G2

C =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (25)

When two users observe the same point feature xPi , i =
1, . . . ,M, the geometric constraint between them is:

G1xPi =
G1pG2 +

G1
G2

CG2xPi (26)
where G1xPi ,

G2xPi are the point feature xPi ’s 3D position
vectors expressed in {G1} and {G2}, respectively.

Subtracting the constraint (26) corresponding to feature xP1
from the ones for xPi , i = 2, . . . ,M, results in:

G1xPi −
G1xP1 =

G1
G2

C(G2xPi −
G2xP1) (27)

which can be rewritten as:

Ai

[
cosθ

sinθ

]
, Aiw = bi, i = 2, . . . ,M (28)

where Ai and bi are a 3×2 matrix and a 3×1 vector respec-
tively, and both of them are functions of G1xPi ,

G1xP1 , G2xPi , and
G2xP1 . By defining A =

[
AT

2 , . . . ,A
T
M
]T and b =

[
bT

2 , . . . ,b
T
M
]T ,

w can be obtained by solving the following minimization
problem:

w∗ = argmin ‖Aw−b‖2

s.t.‖w‖2 = 1 (29)
Note that (29) is a least-squares problem with a quadratic
constraint, which can be solved by following the general
methodology of [33]. Instead, in this work we provide a more
efficient solution in Appendix A, which takes advantage of the
fact that w is a 2×1 vector.

After solving for the yaw angle θ , we substitute G1
G2

C in (26)
and obtain G1pG2 as:

G1pG2 =
1
M

M

∑
i=1

(
G1xPi −

G1
G2

CG2xPi

)
. (30)

Fig. 4: Finding a maximum spanning tree (marked in red
color) on the user graph. The numbers of commonly-observed
features between pairs of users are written on the edges.

Both G1pG2 in (30) and G1
G2

C corresponding to the w calcu-
lated in (29) will be used in Sect. V-C for initializing the CM
algorithm. Note also that this transformation will be estimated
by CM so as to improve the mapping accuracy.

The aforementioned process assumes that all matched point
features are inliers and their 3D position estimates G1 x̂Pi ,

G2 x̂Pi ,
i = 1, . . . ,M, are accurate. In practice, we employ RANSAC
to remove outliers. Specifically, the solution of (29) and (30)
for M = 2 are used as the minimal solver for RANSAC.

2) Initial transformation between multiple users: A naive
approach to obtain the relative pose between any two users
is to compute the relative transformation between all possible
pairs. Instead, we seek to compute the initial transformation
between any two users indirectly by employing a chain of
pairwise transformations.5 To do so, we select the “best”
(in the sense that they are computed using the maximum
number of common features) among them that form a chain
connecting all users. In order to solve this problem, we first
construct a graph whose vertices correspond to each user and
edges are assigned weights proportional to the number of
commonly-observed features between the corresponding users.
Then, we compute the maximum spanning tree (MST) of
the graph following [34]. An example of finding the chain
connection between users is illustrated in Fig. 4, where the
transformations between five users are obtained by combining
the transformation pairs (5, 4), (4, 1), (1, 2), (2, 3). Finally, in
the CM problem, we will estimate the transformation between
the user pairs that correspond to the edges in the resulting
MST.

C. Cooperative Mapping

In this section, we first (Sect. V-C1) present the standard
BLS formulation of the CM problem and briefly discuss some
of its limitations. Subsequently (Sect. V-C2), we reformulate

5Note that only n− 1 transformations should be included in the estima-
tion problem, and they are sufficient for expressing all possible n(n− 1)/2
transformations between users.
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CM as a constrained optimization problem, and show the
equivalence of its solution to that of the BLS formulation.
The solution of the CM formulation is described in Sect. V-C3,
while its advantages as compared to the standard BLS formu-
lation of CM are discussed in Sect. V-C5.

1) BLS Formulation: As previously mentioned, linking the
different users’ maps requires using observations of common
features. The standard BLS formulation when applied to the
CM problem achieves this by modifying the camera measure-
ment models for all three types of features to explicitly con-
sider the transformation between the reference frames of the
users observing the same features. Specifically, for a feature
first observed by user 1 at camera pose {Cη1}, its observation
by user 2 at camera pose {Ck2} can still be expressed using the
original point (6), free-line (9)-(10), or Manhattan-line (12)-
(13) measurement model, but

Ck2
Cη1

C and Ck2 pCη1
need to be

redefined using the transformation, (G1pG2 ,
G1
G2

C), between the
two users as:

Ck2
Cη1

C =
Ck2
G2

CG1
G2

CT Cη1
G1

CT

Ck2 pCη1
=

Ck2
G2

C
(

G1
G2

CT (G1pCη1
− G1pG2)−

G2pCk2

)
(31)

This new camera model, for any common observation, can
be written in a compact form as:

zc = ψ(xa, fc,xτ)+nc (32)

where xτ is a vector of size 4(N − 1) comprising the pair-
wise transformations between users initialized as described in
Sect. V-B, xa ,

[
1p̆T · · · N p̆T

]T is the vector comprising all
users’ poses along with their velocities and IMU biases, fc is
the set of common features observed by two or more users,
and nc is the corresponding measurement noise of covariance
Rc.

Following the standard BLS formulation, we can construct
the cost function for the CM problem by summing the follow-
ing terms: (i) C j(xa, fa), the cost function of each individual
user [see (22)] after removing all cost terms involving common
features, where fa denotes the features observed by only one
user. (ii) The cost terms arising from each user’s observations
to common features [see (32)]. Thus, our objective function
becomes:

x∗τ ,x
∗
a, f
∗
a, f
∗
c = argmin

(
N

∑
j=1

C j + ||zc−ψ(xa, fc,xτ)||2Rc

)
(33)

A standard BLS solution can be obtained following the same
procedure as in (24), by applying Cholesky factorization on
the Hessian matrix arising from all users’ measurements. This
strategy, however, treats the problem as one user collecting a
large dataset, and ignores the fact that often there exist only
few common observations between the different users. In the
next section, we will present our alternative approach that first
constructs a Hessian matrix for each user independently, and
then employs the geometric constraints stemming from the
common-feature observations to create correlations between
the users’ Hessians. As it will become evident later on, our
formulation results in a solution that is modular, parallelizable,
and its processing cost can be adjusted to improve efficiency.

2) CM Formulation: To introduce the proposed CM formu-
lation, we employ the following theorem:

Theorem 1: The optimization problem (33) is equivalent to
the following constrained optimization problem:

x∗τ ,x
∗
a, f
∗
a, f
∗
c1
, · · · , f∗cN

=argmin
N

∑
j=1

C j

s. t. κ(xa,xτ , fc jα
, fc j

β
) = 0,

jα , jβ = 1, . . . ,N, jα 6= jβ (34)
where C j denotes the cost function for user j [see (22)],
fc jα

and fc j
β

are defined as the subset of common features
fc observed by user jα and jβ , and κ(xa,xτ , fc jα

, fc j
β
) denotes

common-feature constraints as defined in (14), (18), (19), and
(21).

Proof: See Appendix B.
Note the Hessian matrix corresponding to the cost function

in the CM formulation (34) has a block-diagonal structure,
where each block comprises the state of one user. As it will
be explained in Sect. V-C5, solving CM as a constrained
optimization problem takes advantage of this structure.

3) CM Solution: Since problem (34) is nonlinear, we solve
it employing Gauss-Newton iterative minimization [35]. At
each iteration, we focus on the following (linearized) con-
strained optimization problem:

δx∗τ ,δ
1x∗u, . . . ,δ

Nx∗u =argmin
N

∑
j=1

∣∣∣∣J jδ
jxu−b j

∣∣∣∣2
s. t. Aτ δxτ +

N

∑
j=1

A jδ
jxu = r (35)

where δ jxu and δxτ are the error states of the user state, jxu,
and transformations between users, xτ , respectively, while J j

and b j are the corresponding Jacobian and residual of C j. A j,
Aτ , and r are the Jacobians (corresponding to jxu and xτ ) and
residual of the constraints.

The KKT optimality conditions [36] for (35) are:
JT

j (J jδ
jxu−b j)+AT

j λ = 0, j = 1, . . . ,N

Aτ δxτ +
N

∑
j=1

A jδ
jxu− r = 0 (36)

AT
τ λ = 0

where λ is the Lagrange-multiplier vector.
To simplify notation, in what follows we present our al-

gorithm for solving (36) for the case of two users, while its
extension to three or more users is straightforward.

Writing (36) in a compact form yields:
JT

1 J1 AT
1

JT
2 J2 AT

2
A1 A2 Aτ

AT
τ


︸ ︷︷ ︸

HCM

δ 1xu
δ 2xu

λ

δxτ

=


JT

1 b1
JT

2 b2
r
0

 (37)

Note that due to the zeros in the (3, 3) and (4, 4)
block-diagonal elements, HCM is not positive definite. Thus,
Cholesky factorization cannot be applied. Although other
methods, such as diagonal pivoting [37], can be employed
to solve (37), we propose an alternative approach that takes
advantage of HCM’s structure and the Cholesky factors previ-
ously computed by each user based on the following theorem:
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Theorem 2: HCM can be factorized into the product of a
lower-triangular and an upper-triangular matrix as:

HCM =


G1

G2
KT

1 KT
2 T11
−T21 T22




GT
1 K1

GT
2 K2
−TT

11 TT
21

TT
22


(38)

where G1 and G2 are the Cholesky factors of the users’
Hessian matrices JT

1 J1 and JT
2 J2, respectively, and T11 and

T22 are lower-triangular matrices.
Proof: Multiplying the two triangular matrices in (38), and

employing the structure of HCM in (37) yields the following
system of equations:

G jK j = AT
j , j = 1,2 (39)

T11TT
11 =

2

∑
j=1

KT
j K j (40)

T11TT
21 = Aτ (41)

T22TT
22 = T21TT

21 (42)
To find the matrices K1, K2, T11, T21, and T22 that satisfy

(39)-(42), we first compute K j, j = 1,2, by solving a linear
equation corresponding to each of the columns of K j [see
(39)].

Moreover, by defining K =
[
KT

1 KT
2
]T , it is easy to see that

2

∑
j=1

KT
j K j = KT K =

[
A1 A2

][(G1GT
1)
−1 0

0 (G2GT
2)
−1

][
AT

1
AT

2

]
is a positive definite matrix because

[
A1 A2

]
has full row

rank [i.e., each common-feature constraint appears in (34) only
once]. Thus, we compute T11 as the Cholesky factor of KT K
that satisfies (40). Given T11, we determine T21 in (41) using
triangular back-substitution.

Lastly, T21TT
21 is also positive definite, and thus T22 is

selected as the Cholesky factor of T21TT
21 [see (42)]. �

Once all the block matrices in (38) are obtained, (37) is effi-
ciently solved by employing two back-substitutions involving
triangular matrices.

4) CM Computational Complexity: Now, we briefly discuss
the processing cost for computing each block in (38). The
Cholesky factors G j do not require any calculation in the
first Gauss-Newton iteration, because they have already been
computed by each user. Starting from the second Gauss-
Newton iteration, the G j matrices need to be re-computed,
which can be done in parallel, at a cost that depends on the
structure of the Hessian.

Computing the K j matrices involves triangular back-
substitution according to (39), which has low computational
cost for two reasons: (i) The A j matrices are very sparse (less
than 0.01% nonzero elements); (ii) Each column of the K j
matrices can be computed in parallel. Note also that since the
number of columns of K is equal to the number of commonly-
observed feature constraints, the time for computing K grows
linearly with the number of constraints.

Defining each row in K as kT
m, KT K is computed as ∑kmkT

m,
where all the terms in the summation are calculated in parallel.
Since the size of km equals the dimension of the commonly-
observed feature constraints, the overall computational com-
plexity increases quadratically with the number of constraints.

The T11 matrix is the Cholesky factor of KT K. Although K
is sparse (about 1% nonzero elements), since it is, in general,
a tall matrix, KT K is typically a dense square matrix with
size equal to the number of commonly-observed feature con-
straints. Thus, computing T11 has, in general, cubic processing
cost with respect to the number of constraints.

Lastly, both T21 and T22 are very small matrices (their size
depends on the number of users/maps), and thus take very little
time to compute. Once all the block matrices are computed,
solving the linear system in (37) requires only two sparse,
triangular back-substitutions.

As we will show in the experimental results, when the
number of common features is relatively small, the most com-
putational demanding part of our CM algorithm is computing
G j. On the other hand, in the case of many common-feature
observations, the processing cost for computing K, KT K,
and T11 (linear, quadratic, and cubic, respectively) becomes
dominant. Note though that, besides computing T11, all these
operations are parallelizable. Additionally, as explained in
Sect. V-D, the CM algorithm provides a straightforward mech-
anism for trading processing cost for accuracy by reducing the
number of commonly-observed feature constraints imposed.

5) CM Solution Advantages: Formulating and solving CM
as a constrained optimization problem has the following ad-
vantages:
Parallelization: In (33), since some of the features are
observed by multiple users, the corresponding off-diagonal
blocks in the resulting Hessian matrix are nonzero. Thus,
there is no straightforward way to parallelize computations. In
contrast, and as described above, most operations required for
solving (34) are parallelizable (e.g., computing the K j and G j
matrices). This is of particular importance when mapping very
large areas (e.g., airports, museums, shopping malls) using
multiple devices.
Memory Efficiency: The BLS formulation (33) requires
applying Cholesky factorization on the Hessian created from
all the users’ data. In contrast, the proposed formulation
[see (34)] applies Cholesky factorization on the (smaller-size)
Hessians corresponding to each user’s data. Since the memory
requirements of Cholesky factorization depend heavily on
the problem size, solving (33) is significantly more memory
demanding.
Modularity: In (33), the feature measurement model changes
if a common feature is already defined in another map, in
which case the transformation between the maps needs to be
involved. In contrast, in (34) common features always use the
same measurement model as the rest of the features (i.e., it
does not involve the maps’ transformations), thus ensuring
uniformity. Moreover, adding (dropping) a user’s trajectory
and map does not affect the Jacobian matrices of the other
users. Instead, we simply add (remove) the corresponding
Jacobian and constraints. This is especially convenient when
expanding the map or updating pre-existing maps.

6) CM Covariance: For the BLS formulation of (33), we
can find the uncertainty of the estimated state, i.e., covariance
matrix, by inverting the system’s Hessian matrix. On the other
hand, since we formulate CM as a constrained optimization
problem, the estimate’s covariance cannot be computed follow-
ing the same procedure. Instead, in Appendix C we present
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the derivation for efficiently computing the CM’s covariance
by taking advantage of the intermediate resulting matrices G j,
K j, T11, T21, and T22.

D. Commonly-observed Feature Sparsification: Resource-
aware CM

As described in Sect. V-C3, the computational cost of
some of the matrices employed by the proposed CM algo-
rithm increases quadratically to cubically with the number of
commonly-observed features. Therefore, the CM algorithm is
best suited for cases when the number of inter-dataset loop-
closures (i.e., feature correspondences) is relatively small. To
address scenarios where the users may observe a large number
of common features, in what follows, we seek to retain the
commonly-observed feature constraints corresponding to only
a subset of them, f̄c1 , . . . , f̄cN , where f̄c j ⊆ fc j , j = 1, . . . ,N, so
as to lower the CM’s processing cost. By doing so, (34) can
be written as:

x∗τ ,x
∗
a, f
∗
a, f
∗
c1
, · · · , f∗cN

=argmin
N

∑
j=1

C j

s. t. κ(xa,xτ , f̄c jα
, f̄c j

β
) = 0,

jα , jβ = 1, . . . ,N, jα 6= jβ (43)
Note that during this constraint “sparsification” process, we do
not drop or change any feature measurement. Instead, we relax
the optimization problem by assuming that a feature common
to two or more maps corresponds to different physical points
or lines in each user’s map. Additionally, since no spurious
information is gained through this approximation, this feature-
sparsification method is consistent.

At this point, we should note that the optimal solution
to the problem of selecting the most informative (in terms
of expected CM accuracy) commonly-observed features has
computational cost significantly higher than solving CM using
all available common features. For this reason, we introduce
a heuristic method to efficiently select commonly-observed
features that are (i) evenly distributed across the physical
space, and (ii) accurately estimated in each map, so as to
improve the rigidity and accuracy of the resulting merged map.

In indoor environments, features appear on the ceiling,
walls, and floor of each level while there are rarely any
between the ceiling and the floor of consecutive levels. By
taking advantage of these gaps in the vertical distribution of
the features, it is fairly easy to partition the 3D space into
volumes, each corresponding to a building floor. To do so,
we project all features on the global (aligned with gravity)
z axis and employ K-means [38] to cluster them into the
corresponding levels. Subsequently, we project each floor’s
features on the x−y plane represented as a uniform grid. Based
on this partitioning, we generate a sparse subset of commonly-
observed features by selecting at most 2 point features per
cell, prioritized by the number of times a feature is observed.
Note that two is the minimum number of features required
for computing the transformation between pairs of maps (see
Sect. V-B). Moreover, our experiments have shown that the
positioning accuracy of a feature typically increases with the
number of observations.

The x− y distribution of common features before and after
sparsification using grids of various sizes is illustrated in

Fig. 9. This common-feature sparsification method is shown
to be effective in our experimental results. For example, in a
building-size dataset, after reducing the number of common
features from more than four thousand to about two hundred,
the root-mean-square difference between the estimated user
trajectories is only 13.5 cm.

VI. EXPERIMENT RESULTS

In this section, we first describe our experimental setup, and
then introduce the methods we employ for tracking point and
line features within a single and across multiple user maps.
Subsequently, we present a detailed experimental evaluation
and analysis of our CM algorithm on two large-scale datasets
collected in Keller Hall and Walter Library at the University
of Minnesota. Specifically, the Keller Hall dataset illustrates
a scenario where the users’ trajectories along the building’s
corridors overlap a lot and hence they observe a large number
of common features. In this dataset, we demonstrate the accu-
racy improvement when employing line features, in addition
to point features, as well as the significant processing savings,
with only minimal accuracy loss, resulting from the proposed
feature-sparsification technique (see Sect. V-D). On the other
hand, the Walter Library dataset represents the typical case
where the users cover, for the most part, different areas of the
building visiting only few common locations. In this dataset,
we show that the CM algorithm is significantly more efficient,
in terms of processing cost and memory usage, as compared to
the standard BLS solution. Finally, we provide a quantitative
evaluation of the CM algorithm on three additional datasets
collected in the RSS 2015 and CVPR 2016 conference sites,
and the MIT Stata Center. An interactive visualization of the
experimental results on these five buildings, as well as on
multiple other locations, is available online at [24].

A. Dataset Preparation and Algorithm Implementation
The visual and inertial measurements used in our CM tests

were collected using Project Tango developer phones and
tablets [39].6 Greyscale images, of resolution 640×480, were
saved at 15 Hz, along with consumer-grade, MEMS-based,
IMU data at 100 Hz. All the reported timing results are
obtained by running the algorithms on a desktop computer
with an Intel R© Xeon R© E5-1650 v2 Processor (3.5 GHz).
The parallelization is implemented using Intel’s threading
building blocks (TBB) library [40]. The matrix operations
are performed utilizing the Eigen library [41], while the
Cholesky factors (i.e., the matrices G j) are computed by
employing the Cholmod [31] algorithm from the SuiteSparse
library [42].7 Based on our tests, Cholmod is faster than
other Cholesky factorization algorithms, such as the Simplicial
Cholesky in Eigen and CSparse [44] in SuiteSparse. Cholmod
is a sequential algorithm, but it is able to utilize a basic
linear algebra subprograms (BLAS) library to perform low-
level matrix operations (e.g., matrix multiplication) in parallel.
For this reason, we compared the speed of three of the most

6We only use the Tango phones and tablets for collecting visual and inertial
data. All the algorithms described in Sect. V were implemented by the authors
of this paper.

7Note that the SuiteSparse library is also used in Google’s standard non-
linear least-squares solver, Ceres [43].
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(a) (b)

(c) (d)
Fig. 5: Keller Hall dataset: Trajectories of the four users.

widely used BLAS libraries: OpenBLAS [45] (developed from
GotoBLAS2 [46]), EigenBLAS (the BLAS supported by the
Eigen library), and Intel MKLBLAS [47]. MKLBLAS turns
out to be the fastest one, and it is the one we chose to use.

In the proposed algorithm, as shown in Sect. V-A, every
user first solves its own single-map (SM) estimation problem
via BLS to determine its local trajectory and map. To do so,
each user requires the following information:
(SM 1) An initial estimate for its trajectory and map:
In our case, this is computed using an extension of the
multi-state constrained Kalman filter (MSC-KF) [48], based
on [16] and [49]. Each MSC-KF operates on the IMU mea-
surements and feature tracks collected by each user. Feature
tracks correspond to Harris-corners [50] extracted from each
image and tracked using the Kanade-Lucas-Tomasi (KLT)
algorithm [51]. The subset of these feature tracks that pass
the 2pt-RANSAC [52], are used by the MSC-KF, along with
the IMU data, to estimate the trajectory of each user. These
tracks, however, are not employed for loop-closure detection.
(SM 2) Intra-dataset point-feature loop-closure detection: To
determine if a user has revisited an area, we follow a bag-
of-words approach using ORB feature descriptors [53] and
employ our implementation of Nistér’s vocabulary tree [54].
These matches are confirmed after they pass a 3pt+1-
RANSAC [55] geometric-consistency test.
(SM 3) Line tracking and intra-dataset line-feature loop-
closure detection: Algorithm 1 summarizes the main steps
of the line-tracking process. First, from each image Ik, k =
1, . . . ,K, line segments are extracted using the line segment de-
tection (LSD) algorithm [56], and the corresponding line nor-
mals are assigned to the set Fk (see lines 2-4 of Algorithm 1).
Then, for k≥ 3, each line normal sk ∈Fk is tested against the
current (accepted as valid) 3D line hypotheses L (initially
an empty set) by computing the re-projection errors in (9) and
(10). Note that each hypothesis comprises the triangulated line
parameters and the corresponding set of pairs of image indices
and line-normal measurements. The line normals which pass
the test are added to the list of their accepting hypothesis and
are removed from Fk to avoid re-processing (see lines 6-12
of Algorithm 1). Additionally, the method for computing the
4-dof line parameters based on measurements [see Meas(h) in
line 8 of Algorithm 1] corresponding to each hypothesis h is

(a)

(b)

(c)
Fig. 6: Keller Hall dataset: Merged trajectories of all users:
(a) 3D, (b) y-x, and (c) x-z views. Each user’s trajectory is
depicted with a different color.

described in Appendix D.

Afterwards, as shown in lines 13-19 of Algorithm 1, the
line-tracking process creates a new set H of candidate 3D
lines by assuming each possible pair of line normals sk−2 ∈
Fk−2 and sk−1 ∈ Fk−1 corresponds to measurements of a
single 3D line observed at poses k−2 and k−1, respectively.

Subsequently, each hypothesis h ∈H is validated by com-
puting the re-projection error of each line normal sk ∈Fk. If
this is smaller than a threshold (currently set to 0.01), h is
updated with sk and is added to L . These steps are shown in
lines 20-27 of Algorithm 1.

Once the line-tracking process is completed, the subset
of line tracks corresponding to the cardinal directions of
the building (i.e., Manhattan lines) are identified using a
RANSAC-based vanishing-point estimator [57]. Lastly, we use
the trajectory and line BLS estimates of each user to search
for loop-closure line features at poses where loop-closure
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Input: Ik, k = 1, . . . ,K the set of images viewed by
each pose k of the user j; the camera poses jp̆ of
the user j

Output: The set of line tracks L
1 L ←{}; // Initially empty set of 3D

lines
// Extract line normals of images

2 for k = 1 : K do
3 Fk← LSD_Extract(Ik)
4 end
5 for k = 3 : K do

// Test current line measurements
against previous hypotheses

6 foreach h ∈L , s ∈Fk do
7 if Repro jectionLineTest(h, s, jp̆) then
8 Meas(h) ← Meas(h) ∪{(k,s)}
9 Param(h) ← TriangulateLine(Meas(h), jp̆)

10 Fk←Fk−{s}
11 end
12 end

// New hypotheses generation
13 H ←{}; // Potential line hypotheses
14 foreach sk−1 ∈Fk−1, sk−2 ∈Fk−2 do
15 h←∅
16 Meas(h) ← {(k−2,sk−2) ,(k−1,sk−1)}
17 Param(h) ← TriangulateLine(Meas(h), jp̆)
18 H ←H ∪{h}
19 end

// Test current line measurements
against new hypotheses

20 foreach h ∈H , s ∈Fk do
21 if Repro jectionLineTest(h, s, jp̆) then
22 Meas(h) ← Meas(h) ∪{(k,s)}
23 Param(h) ← TriangulateLine(Meas(h), jp̆)
24 Fk←Fk−{s}
25 L ←L ∪{h}
26 end
27 end
28 end

Algorithm 1: Line tracking process. Each line track con-
sists of a set of line normals viewed by different poses.

point features have previously been found.8 In particular, if
any free or Manhattan lines are close to each other (i.e., the
difference of their distance and direction parameters are within
one degree and 15 cm, respectively), they are accepted as loop-
closure measurements.

Once each user has solved its own SM problem, they
communicate to the CM algorithm their estimated trajecto-
ries, maps, Cholesky factors, and all available visual-inertial
measurements. At this point, another step of preprocessing is
required to compute the following quantities:

(CM 1) Inter-dataset point-feature loop-closure detection:
To achieve this, we follow the same procedure as in (SM 2),

8This requirement (i.e., to concurrently have a point-feature loop-closure)
is imposed so as to increase robustness to line mismatching.

(a)

(b)

(c)
Fig. 7: Keller Hall dataset: (a)-(b) 3D point cloud from two
viewing directions. (c) 3D Manhattan-line features following
the cardinal directions colored with red (x), green (y), and blue
(z), respectively.
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and determine the matched images and corresponding common
features across all users’ datasets.
(CM 2) Relative-transformation initialization: Once common
point features are identified, we follow the approach of
Sect. V-B to compute an initial estimate for the unknown,
4-dof transformation between each user pair.
(CM 3) Inter-dataset line-feature loop-closure detection: We
follow a process similar to (SM 3) using the CM camera pose
estimates.

Once the above pre-processing steps are completed, we
employ the CM algorithm of Sect. V-C to estimate the trajec-
tories of all users, as well as the combined building map. The
results from our experiments are summarized in the following
sections.

B. Evaluation Results on the Keller Hall Dataset

This dataset is acquired by four users navigating through
the building. The CM estimated user trajectories are shown in
Fig. 5 and Fig. 6. Figs. 5 (a)-(d) correspond to trajectories of
approximately 1300, 1000, 800, and 500 m, respectively, from
which 181,140 points, 945 free lines, and 4,511 Manhattan
lines are processed by the CM algorithm. Of these features,
4,243 points, 18 free lines, and 148 Manhattan lines are
common to two or more datasets. Additionally, we present
the estimated 3D point cloud and lines in Fig. 7.

1) CM with Point and Line Features: The achieved accu-
racy of the CM algorithm can be qualitatively assessed by
observing the CM estimated trajectories of all users for the
Keller Hall datasets shown in Fig. 6. Note that we intentionally
instructed the users collecting data to keep the camera at about
the same height, and walk in the middle of fairly narrow
corridors. Correspondingly, the z (height) estimated for all
users’ trajectories remains about the same in the x− z view
of the trajectory estimates [see Fig. 6 (c)], despite the fact
that they have travelled for hundreds of meters across multiple
floors. Moreover, in the x− y view [see Fig. 6 (b)], the user
trajectories on different floors overlap almost exactly.

In addition to the qualitative results, we also present a
ground-truth comparison. Specifically, we placed four April-
Tags [58] in the far corners of a single floor within the
building and used the building’s blueprints to determine the
true distance (ground truth) between any pair of AprilTags.
On the other hand, to compute the estimated distance between
AprilTags, we first employ the PnP algorithm of [59] to find
the observing camera’s pose, (AnpCk , An

Ck
C), with respect to

each AprilTag’s frame, and then use the CM estimate of the
camera’s global pose, (GpCk , G

Ck
C), to express each AprilTag

with respect to the global frame {G} as:
GpAn =

GpCk −
G
Ck

CAn
Ck

CT AnpCk (44)
Next, we average the estimated positions of each AprilTag
across all camera observations and compute the estimated pair-
wise distances between AprilTags. For example, the estimated
distance between two AprilTags, An1 and An2 , is computed as
‖GpAn1

− GpAn2
‖. Lastly, we assess the CM algorithm’s accu-

racy by comparing the difference between the estimated and
true distances between all AprilTags. Note the distance from
the camera to the AprilTag is relatively small as compared to
the distance between AprilTags (about 0.4 m compared to over

Fig. 8: Trajectories of all users in Keller Hall using points-only
versus points, free lines, and Manhattan lines.

Algorithm Initialization 8 m grid 4 m grid 1 m grid Exact
Constraint dimension 0 1050 2063 5877 16912

Feature count 0 223 488 1507 4243
Position RMSD (cm) 258.3 13.5 8.8 5.7 0

TABLE I: Keller Hall dataset: Number of common point
features, the dimension of common point, free-line, and
Manhattan-line feature constraints, and position RMSD of the
approximate CM solutions as compared to the exact CM.

80 m) so any error in the PnP estimate will negligibly affect
the result.

The effect of using free and Manhattan lines is depicted in
Fig. 8. In particular, the absolute/relative errors in the pairwise
distances between AprilTags estimated by the CM algorithm
when using only points versus when using points, free-lines,
and Manhattan-lines are 63 cm/0.84% and 48 cm/0.64%,
respectively. Furthermore, at the part of the trajectory shown
as zoomed-in at the bottom-left of Fig. 8, one of the users
explores a new area where no loop-closure information is
available. In this case, when only points are used, the estimated
user trajectory deviates about 1.7 m from the corridor, while
this error is corrected by processing line features. In addition
to the increased number of measurements when processing
lines, the improved accuracy is attributed to the availability of
orientation information (from Manhattan lines) about the users
with respect to a single, common building frame. Lastly, the
trajectory estimated when employing only point features has
a small, but noticeable yaw error. This error, as expected, is
corrected when Manhattan lines are also used since they pro-
vide attitude information between the user’s and the building’s
frames, which makes the yaw angle observable.

2) Sparse CM: Hereafter, we compare the exact CM
algorithm with the following four approximations: (i) The
initialization (zero-th iteration) of the CM algorithm; that is,
the maps and trajectories resulting when we align the BLS-
estimated single-user maps using the inter-dataset transforma-
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(a) (b)

(c) (d)
Fig. 9: Common point features in the Keller Hall dataset:
(a) Original CM, sparse CM using grid cells of size
(b) 1×1 m2, (c) 4×4 m2, (d) 8×8 m2.

Fig. 10: Keller Hall dataset: Trajectories estimated from the
original CM and sparse CM with common-feature sparsifica-
tion using grid cells of size 8×8 m2.

tion computed by the method of Sect. V-B; (ii)-(iv) Sparse
CM, i.e., CM with commonly-observed feature sparsification
(see Sect. V-D), using grid cells of size 1×1 m2, 4×4 m2, and
8×8 m2, respectively. Since the number of common free-line
and Manhattan-line features is small, we only sparsified the
point features. The common point features before and after
sparsification are shown in Fig. 9.

The resulting number of common point features, the di-
mension of the total common point, free-line, and Manhattan-
line feature constraints [see (43)], as well as the Root Mean
Square Difference (RMSD) of the position with respect to
the exact CM estimates of (i)-(iv) are shown in Table I. In

Algorithm 8 m grid 4 m grid 1 m grid Exact
G j 13.5 13.5 13.5 13.5
K j 4.8 9.7 29.3 85.7

KT K 1.2 4.5 36.4 334.2
T11 0.04 0.2 5.0 114.5

CM total 19.5 27.9 84.2 547.9
BLS 32.9 34.4 37.4 41.6

TABLE II: Keller Hall dataset: Timing comparison between
CM and BLS with different number of commonly-observed
features (sec/iteration).

order to visually inspect the impact of this level of position
RMSD on the estimated user trajectories, we depict the ones
computed from the sparse CM using grid cells of size 8×8 m2

against those found by the exact CM in Fig. 10. Notice that
the sparse CM preserves about 5% of the common-feature
constraints, while obtaining an estimate that has very small
position difference from that of the exact CM. The intuition
behind this result is that since only two point features are
required to compute the transformation between two maps
(see Sect. V-B), a few hundred (instead of several thousand)
common-feature constraints suffice for creating an accurate
merged map.

The timing results of the exact and sparse CM algorithms
are reported in Table II.9 Note that all the algorithms typically
converge after 5-10 Gauss-Newton iterations. For comparison,
we also report the timing results for solving the equivalent
BLS formulation [see (33)] using the Cholmod Cholesky-
factorization algorithm.10 As evident from Table II, the sparse
CM takes significantly less time compared to the exact CM
solution. Moreover, when the number of common features is
in the order of a few hundred (as shown in Table I, 233 for
8 m grid and 488 for 4 m grid), the proposed CM solver is
significantly faster than the equivalent BLS solver. Further-
more, since the Cholesky factors (G j matrices) can be reused
from each single-user BLS in the first iteration, additional
time can be saved by the CM algorithm. At this point, we
should note that, as shown in Table II, the time for computing
the matrices G j is constant, while finding K j, KT K, and T11
has complexity linear, quadratic, and cubic, respectively, in
the dimension of the common-feature constraint. This result
verifies the computational complexity analysis of Sect. V-C3,
and confirms that the processing cost of the CM algorithm can
be controlled by adjusting the number of commonly-observed
features.

Lastly, in Table III we compared the peak memory us-
age between the proposed CM algorithm, when computing
the Cholesky factorizations corresponding to each dataset
sequentially, and the equivalent BLS solver. The CM solver
maximizes its memory use when computing the Cholesky
factor, G j, of the Hessian matrix corresponding to the largest
dataset, which is independent of the number of commonly-
observed features. Analogously, the peak memory usage of
the BLS solver occurs during the Cholesky factorization of
the Hessian corresponding to the merged dataset, which is
about 4 times larger than the CM’s Hessian corresponding
to the largest dataset. Since the memory requirements of the
Cholesky factorization increase almost linearly (for sparse
matrices) with the size of the Hessian, the BLS requires
approximately 4 times more memory than the CM algorithm.
Furthermore, this memory usage grows with the number of
common features, as these introduce correlations between
different datasets. Note that while the results in this paper
pertain to running on a desktop PC, many of the potential
use cases require running CM on mobile devices. On such

9The timings for CM initialization is not listed because it does not perform
the same computations as the other methods, but instead it directly aligns the
users’ trajectories and maps.

10In all cases, the same common-feature constraints are employed in the
CM and BLS formulations. Hence, the CM and BLS solvers produce the same
solutions (within numerical precision) but with different timings.
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Algorithm 8 m grid 4 m grid 1 m grid Exact
CM 1.37 1.37 1.37 1.37
BLS 4.41 4.72 4.97 5.60

TABLE III: Keller Hall dataset: Peak memory usage com-
parison between the proposed CM algorithm and the BLS
formulation (in GB).

G j K j KT K T11 CM total BLS
Time 7.94 3.47 0.52 0.07 11.95 16.33

TABLE IV: Walter Library dataset: Timing comparison be-
tween CM and BLS (sec/iteration).

hardware, the memory footprint of a mapping algorithm is of
particular importance due to limited available RAM (e.g., the
Project Tango tablet has 4 GB of RAM out of which 1 GB is
used by the Android operating system).

C. Evaluation Results on the Walter Library Dataset

This dataset is collected by three users when walking for
approximately 600, 600, and 650 m. The CM-estimated users’
trajectories are shown in Fig. 11 and Fig. 12. Note that
the height change of the trajectory depicted in black [see
Fig. 12 (c)] is because of the two ramps on the first floor. Since
the users’ trajectories have limited overlap, only 200 features
(see Fig. 13), amongst the 78,868 point features processed
by the CM, are commonly observed by more than one user.
For this reason, no common-feature constraint sparsification
is necessary in this case. Instead, we will focus our analysis
on the exact CM algorithm’s computation and memory re-
quirements as compared to the standard BLS. The timings
for computing the CM and BLS solutions are reported in
Table IV, and their required memory usage are 0.93 GB and
2.44 GB, respectively. Note that the CM algorithm has a 37%
speedup and 163% memory savings. Moreover, recall that the
processing bottleneck of the CM solution for the Keller Hall
dataset was computing the matrices K j, KT K, and T11. As
these costs decrease with the number of common features,
computing the Cholesky factors G j corresponding to each
user’s dataset, becomes the most expensive operation.

For the purpose of completeness, we also provide the sparse
CM memory, timing, and accuracy results in Table V. As
compared to the Keller Hall dataset, since there are fewer
common features, and thus a lower percentage of them is
pruned, the sparse CM accuracy loss is also smaller.

Algorithm Initialization 8 m grid 4 m grid 1 m grid Exact
Constraint dimension 0 99 174 369 600

Feature count 0 33 58 123 200
CM time (sec/iter) 0 8.8 9.2 10.7 12.0
BLS time 0 15.4 15.7 15.9 16.3
CM memory (GB) 0 0.9 0.9 0.9 0.9
BLS memory 0 2.1 2.2 2.3 2.4

Position RMSD (cm) 44.0 7.9 5.3 2.7 0

TABLE V: Walter Library dataset: Three user trajectories of
approximately 600, 600, and 650 m.

Algorithm Initialization 8 m grid 4 m grid 1 m grid Exact
Constraint dimension 0 222 591 1821 4647

Feature count 0 73 194 598 1534
CM time (sec/iter) 0 31.1 35.3 58.4 158.7
BLS time 0 46.4 48.5 60.9 63.2
CM memory (GB) 0 2.9 2.9 2.9 2.9
BLS memory 0 5.5 5.7 6.9 7.2

Position RMSD (cm) 60.2 10.0 8.7 4.5 0

TABLE VI: RSS 2015 conference site dataset: Three user
trajectories of approximately 700, 800, and 400 m.

Algorithm Initialization 8 m grid 4 m grid 1 m grid Exact
Constraint dimension 0 711 1638 5472 12129

Feature count 0 222 514 1695 3780
CM time (sec/iter) 0 26.8 40.3 122.7 433.3
BLS time 0 44.6 47.7 49.5 54.5
CM memory (GB) 0 1.7 1.8 1.8 1.8
BLS memory 0 4.8 4.9 5.4 5.9

Position RMSD (cm) 68.4 29.3 13.4 9.1 0

TABLE VII: CVPR 2016 conference site dataset: Three user
trajectories of approximately 950, 500, and 1000 m.

D. Evaluation Results on Additional Datasets

In this section, we quantitatively evaluate the exact and
sparse CM algorithms on three more datasets: RSS 2015
conference site, CVPR 2016 conference site, and MIT Stata
Center, which are included in our online interactive visualiza-
tion [24]. The corresponding timing results, position RMSD,
peak memory usage, as well as number of common-feature
constraints are shown in Tables VI, VII, and VIII, respec-
tively. Similar to the conclusion drawn before, in all these
three datasets, the sparse CM algorithm has typically lower
processing and memory requirements as compared to the BLS
solver.

One interesting finding is that the position RMSD of the
CM initialization is much larger on the longest testing dataset
(the MIT Stata Center) as compared to the others. This is
because when aligning different users’ trajectories, the position
RMSD introduced by their relative orientation error increases
proportionally to the trajectory radius. For the same reason,
in this dataset, the position error of the exact CM solution, as
well as the position difference between the exact and sparse
CM solutions, is also expected to be larger. Another important
thing to note is that the mapping accuracy and processing cost
also strongly depend on the building’s size. For example, as
compared to the Keller Hall, the CVPR 2016 conference site
is a significantly larger building (i.e., contains more features),
while the total trajectory length in the collected dataset is
shorter (i.e., less coverage of each corridor). As a result, both
the CM and BLS solutions are more expensive on this dataset,
while the resulting position RMSD is still higher.

In summary, as compared to the standard BLS, the CM
algorithm is significantly more efficient in terms of both
computational cost and memory usage when the number of
common features is small. On the other hand, as the number
of feature constraints increases, the CM solution remains
less memory demanding but requires more computations. In
such cases, we have the option of incurring a minimal loss
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(a) (b) (c)
Fig. 11: Walter Library dataset: Trajectories of the three users.

(a)

(b)

(c)
Fig. 12: Walter Library dataset: Merged trajectories of all users
from (a) 3D, (b) x-y, and (c) x-z views. Each user’s trajectory
is depicted with a different color.

Fig. 13: Common point features in the Walter Library dataset.

Algorithm Initialization 8 m grid 4 m grid 1 m grid Exact
Constraint dimension 0 831 1905 5853 10179

Feature count 0 221 526 1652 2892
CM time (sec/iter) 0 23.7 30.4 81.7 191.3
BLS time 0 58.2 60.6 64.7 65.5
CM memory (GB) 0 1.3 1.3 1.3 1.3
BLS memory 0 6.1 6.6 7.5 7.7

Position RMSD (cm) 974.3 48.1 28.9 17.0 0

TABLE VIII: MIT Stata Center dataset: Seven user trajectories
of approximately 1050, 1050, 1550, 150, 400, 1300, and
700 m.

of estimation accuracy for a significant gain in speed by
processing only a subset of the common features selected
as described in Sect. V-D. Finally, we note that as a highly
parallelizable algorithm, CM will have even larger processing
time savings compared to BLS if running on a more powerful
computer, e.g., on the cloud.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced a cooperative mapping (CM)
algorithm for combining visual and inertial measurements
collected using multiple mobile devices at different times
across large indoor spaces. We considered the most general
case, where the users’ relative transformation is not known
and cannot be inferred by directly observing each other. Our
formulation of CM as a batch least-squares (BLS)-equivalent
constrained-optimization problem offers significant advantages
when processing multiple maps: (i) Resource awareness, as
the computational cost can be adjusted by selecting a subset
of commonly-observed feature constraints; (ii) Computational
gains, as the most computationally intensive operations are
parallelizable; (iii) Memory savings, as Cholesky factorization
is applied on the Hessian of each user’s data instead of the
Hessian corresponding to the merged data from all users.
Furthermore, in addition to point features, we utilized free-
line and Manhattan-line features for improving the estimation
accuracy by making the yaw angle observable. Five large-
scale CM experiments were conducted in order to assess the
performance of the proposed algorithm, while more qualitative
evaluations can be found in our online interactive visualiza-
tion [24].

As part of our future work, we plan to further investigate the
impact of each common feature on the mapping accuracy. In
particular, we seek to find geometric criteria for efficiently de-
termining the common-feature constraints that, when removed,
will cause minimum increase in the resulting CM covariance.
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APPENDIX A
SOLUTION TO THE LEAST-SQUARES PROBLEM WITH A

QUADRATIC CONSTRAINT

The KKT optimality conditions [36] for (29) are:

AT (Aw−b)+λw = 0 (45)
wT w−1 = 0 (46)

Expressing w with respect to λ from (45) and substituting
into (46) yields:

bT A(AT A+λ I)−2AT b = 1 (47)

Next, we define:

AT A+λ I =
[

a11 +λ a12
a12 a22 +λ

]
,

compute its inverse analytically

(AT A+λ I)−1 =
1

(a11 +λ )(a22 +λ )−a2
12

[
a22 +λ −a12
−a12 a11 +λ

]
and substitute it in (47) to get the following equation:

bT A
[

a22 +λ −a12
−a12 a11 +λ

]2

AT b

=
[
(a11 +λ )(a22 +λ )−a2

12
]2

(48)

Note that (48) is quartic in λ and can be solved in closed
form. Once λ is obtained, w can be computed through back-
substitution using (45).

APPENDIX B
PROOF OF THEOREM 1

We prove the theorem for the simple case of a point feature
commonly observed by two users. The extension to different
types of features and multiple users is straightforward.

Consider a point feature, Cη1 xP, defined with respect to the
camera pose {Cη1} of user 1, and also observed by user 2 at
camera pose {Ck2}. From (33), the BLS formulation of this
problem is:

x∗τ ,x
∗
a, f
∗
a,

Cη1 x∗P

=argmin

(
2

∑
j=1

C j +‖Ck2 z−π

(
Ck2 pCη1

+
Ck2
Cη1

CCη1 xP

)
‖2

R

)
(49)

where the relative camera pose (Ck2 pCη1
,

Ck2
Cη1

C) can be ex-
pressed as a function of the system states xτ and xa as:

Ck2 pCη1
=

Ck2
G2

C
(G1

G2
CT (G1pCη1

− G1pG2)−
G2pCk2

)
Ck2
Cη1

C =
Ck2
G2

CG1
G2

CT G1
Cη1

C
On the other hand, the proposed CM formulation is:

x∗τ ,x
∗
a, f
∗
a,

Cη1 x∗P,
Cη2 x∗P =argmin

2

∑
j=1

C j (50)

s. t. Cη2 xP =
Cη2
Cη1

CCη1 xP +
Cη2 pCη1

(51)

where the same feature also appears as Cη2 xP with respect
to a camera pose {Cη2} of user 2. Note that in this case,
the relative user transformation (G1pG2 , G1

G2
C) appears in the

constraint (51), instead of the cost function. Specifically, the
relative pose (Cη2 pCη1

,
Cη2
Cη1

C) between the two camera poses

with respect to which this feature is expressed in the two users’
maps is:

Cη2 pCη1
=

Cη2
G2

C
(G1

G2
CT (G1pCη1

− G1pG2)−
G2pCη2

)
Cη2
Cη1

C =
Cη2
G2

CG1
G2

CT G1
Cη1

C
As mentioned earlier, in CM, we employ the nominal

camera measurement model [see (6)] to express a feature’s
observation by user 2. Thus, the corresponding cost term for
this measurement appearing in C2 [see (50)] is:

‖Ck2 z−π

(
Ck2 pCη2

+
Ck2
Cη2

CCη2 xP

)
‖2

R (52)
Substituting the constraint (51) into the cost term (52) results
in:

‖Ck2 z−π

(
Ck2 pCη2

+
Ck2
Cη2

CCη2 xP

)
‖2

R

= ‖Ck2 z−π

(
Ck2 pCη2

+
Ck2
Cη2

C(
Cη2
Cη1

CCη1 xP +
Cη2 pCη1

)
)
‖2

R

= ‖Ck2 z−π

(
Ck2 pCη1

+
Ck2
Cη1

CCη1 xP

)
‖2

R (53)
which is the same as the corresponding cost term in the
BLS formulation (49). Thus, the CM (34) and BLS (33)
formulations are equivalent in this case. �

APPENDIX C
COMPUTING THE COVARIANCE MATRIX OF THE CM

SOLUTION

We hereafter present how to compute the covariance of the
CM estimates as a function of the matrices K j, G j, T11, T21,
and T22 [see (39)-(42)] for the case of two users.

Permuting the third and fourth block rows and columns
of (37) yields the following equivalent linearized system:J1

T J1 0 0 AT
1

0 J2
T J2 0 AT

2
0 0 0 AT

τ

A1 A2 Aτ 0


︸ ︷︷ ︸

C

δ 1xu
δ 2xu
δxτ

λ

=

JT
1b1

JT
1b2
0
r

 (54)

As shown in [60], the covariance of the error-state vector
in (54),

[
δ 1xT

u δ 2xT
u δxT

τ

]T , which is the same as the
one computed when solving the unconstrained optimization
problem, is equal to the top-left 3×3 block of C−1. To derive
C−1, we first partition C as:

C =

[
JT J Y
YT Θ

]
(55)

where
JT J,

[
J1

T J1 0
0 J2

T J2

]
, Y,

[
0 AT

1
0 AT

2

]
, Θ,

[
0 AT

τ

Aτ 0

]
(56)

Note also that based on the definition of the G j and K j
matrices in (39), we have:

JT J = GGT , G−1Y =
[
0 K

]
(57)

Next, we partition C−1 as:

C−1 ,

[
E2×2 BT

2×2
B2×2 D2×2

]
(58)

and derive the expressions of D, E, and B in terms of K j,
G j, T11, T21, and T22. In particular, by employing the block
matrix-inversion lemma on C, D can be expressed as:

D =

([
0 AT

τ

Aτ 0

]
−YT (GGT )−1Y

)−1

=

[
0 AT

τ

Aτ −KT K

]−1

︸ ︷︷ ︸
M

,

[
M11 M12
MT

12 M22

]
(59)
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where based on the block matrix-inversion lemma the elements
of matrix M are computed as:

M11 = (AT
τ (K

T K)−1Aτ )
−1

M12 = (AT
τ (K

T K)−1Aτ )
−1AT

τ (K
T K)−1

M22 = (−KT K)−1 +(KT K)−1Aτ (AT
τ (K

T K)−1Aτ )
−1AT

τ (K
T K)−1

The above expressions can be further simplified using the
definitions of T11, T21, and T22 [see (40)-(42)] as:

M11 = (T22TT
22)
−1 (60)

M12 = (T22TT
22)
−1T21T−1

11 (61)

M22 =−(T11TT
11)
−1 +T−T

11 TT
21(T22TT

22)
−1T21T−1

11 (62)
Similar to D, the matrices E and B are also determined by
applying the block matrix-inversion lemma on C [see (58)],
i.e.,
E =(GGT )−1 +(GGT )−1YMYT (GGT )−1

=(GGT )−1 +
[
0 G−T K

][M11 M12
MT

12 M22

][
0

KT G−1

]
=(GGT )−1 +G−T KM22KT G−1 (63)

B =−
[

M11 M12
MT

12 M22

]
(G−1Y)T G−1 =−

[
M12KT G−1

M22KT G−1

]
=

[
−(T22TT

22)
−1T21T−1

11 KT G−1

−
[
T−T

11 TT
21(T22TT

22)
−1T21T−1

11 − (T11TT
11)
−1
]

KT G−1

]
(64)

With the derived D, E, and B matrices [see (59), (63), and
(64)], the covariance of the CM estimates, i.e., the top-left
3×3 block of matrix C−1 is obtained as:

C−1(1 : 3,1 : 3) =
[

E B(1,1)T

B(1,1) D(1,1)

]
=[

(GGT )−1 +G−T KM22KT G−1 −G−T KT−T
11 TT

21(T22TT
22)
−1

−(T22TT
22)
−1T21T−1

11 KT G−1 (T22TT
22)
−1

]
It can be easily shown that for the case of three or more users,
the expression of the CM estimates’ covariance has the same
structure as above, with the size of the matrices G and K
increasing with the number of users.

APPENDIX D
LINE FEATURE TRIANGULATION

We hereafter present the method we employ for triangulat-
ing line features (i.e., computing the rotation and distance of
the line with respect to its first observing camera pose), both
for the minimal and least-squares cases. Assuming that the
line is first observed by the camera frame {Ck}, we define the
x and z axes of the line frame as:

`̀̀ = Ck xL ,
Ck
L Ce1 (65)

Ck zL ,
Ck
L Ce3 (66)

Using these definitions and equations (9) and (10), the line
constraints resulting from the observation sk+m of a camera
{Ck+m} are:

sT
k+m

Ck+m
Ck

C`̀̀ = 0 (67)

sT
k+m

(
Ck+m
Ck

CCk pL +
Ck+mpCk

)
= 0 (68)

where (67) and (68) constrain the line’s direction, `̀̀, and
position, Ck pL, respectively.

In this Appendix, for the sake of clarity, we represent all
camera poses in the frame {Ck}, i.e., the first observing camera
of the line.

Fig. 14: Depiction of the geometric constraints between the
line `̀̀ and the camera poses from which it is observed.

A. Minimal case

First, we show how the line parameters are extracted using
observations from two different known camera poses Ck and
Ck+1. Substitution of the line direction `̀̀ and the observing
camera parameters in (67) results in:

sT
k `̀̀ = 0 (69)

sT
k+1

Ck+1
Ck

C`̀̀ = 0 (70)

Since `̀̀ is perpendicular to both sk and Ck+1
Ck

CT sk+1, the
direction of the line is computed as:

`̀̀ = γbskc
Ck+1
Ck

CT sk+1 (71)

where

γ
−1 = ||bskc

Ck+1
Ck

CT sk+1||2

=
√

sT
k+1

Ck+1
Ck

C(I− sksT
k )

Ck+1
Ck

CT sk+1

=
√

1− (sT
k+1

Ck+1
Ck

Csk)2 (72)

The remaining 2 dof of the 3D line corresponding to the
distance Ck dL to the line and the unit vector Ck zL, which is
normal to the line (see Fig. 14), are determined as follows:

From the geometry of the problem, we have:
Ck zL = b`̀̀csk (73)

Next, substituting
Ck pL =

Ck dL
Ck zL =

Ck dLb`̀̀csk =−Ck dLbskc`̀̀ (74)

in (68) for m = 1, i.e.,

sT
k+1

(
−Ck dL

Ck+1
Ck

Cbskc`̀̀+Ck+1pCk

)
= 0

(75)

yields11

Ck dL =
sT

k+1
Ck+1pCk

sT
k+1

Ck+1
Ck

Cbskc`̀̀
=−γ sT

k+1
Ck+1pCk (76)

Finally, the triangulated line parameter vector is[
Ck qT

L
Ck dL

]T , where Ck qL is the quaternion representation of
the rotation matrix Ck

L C =
[
`̀̀ sk

Ck zL

]
.

11Please note that we choose the direction of `̀̀ such that Ck dL > 0.
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B. Least-squares case
Given K > 1 observations of the line normals from known

camera poses, the line parameters are computed by minimizing
the sum of squares of the re-projection errors corresponding
to (67) and (68). Specifically, we first seek to find the unit
vector `̀̀ that minimizes the cost function

C`̀̀ =
K−1

∑
m=0
||sT

k+m
Ck+m
Ck

C`̀̀||22 (77)

= `̀̀T

(
K−1

∑
m=0

Ck+m
Ck

CT sk+msT
k+m

Ck+m
Ck

C

)
`̀̀ (78)

= `̀̀T
ΓΓΓ

T
ΓΓΓ`̀̀ (79)

As evident, (79) is minimized by selecting as `̀̀ the eigenvector
corresponding to the minimum eigenvalue of the symmetric
positive definite matrix ΓΓΓ

T
ΓΓΓ where

ΓΓΓ =


sT

k
sT

k+1
Ck+1
Ck

C
...

sT
k+K−1

Ck+K−1
Ck

C

 . (80)

Next, given the optimum value `̀̀∗ of (79), we seek to find
Ck pL =

Ck dL
Ck zL that minimizes the cost function

CL =
1
2

K−1

∑
m=0
||sT

k+m

(
Ck+m
Ck

CCk pL +
Ck+mpCk

)
||22 (81)

=
1
2
||ΓΓΓCk pL−ξξξ ||2 (82)

s.t. `̀̀∗T Ck pL = 0 (83)
where

ξξξ =−


0

sT
k+1

Ck+1pCk
...

sT
k+K−1

Ck+K−1pCk

 . (84)

To do so, we employ the Lagrange multiplier method [61],
which results in the following system of linear equations:[

ΓΓΓ
T

ΓΓΓ `̀̀∗

`̀̀∗T 0

][
Ck pL

λ

]
=

[
ΓΓΓ

T
ξξξ

0

]
(85)

Once Ck pL is found from (85), Ck zL and Ck dL are computed as
Ck dL = ||Ck pL||2, Ck zL =

1
Ck dL

Ck pL.

NOMENCLATURE

j User index
i Feature index
{G} Global frame
{Cη} Frame of the camera pose first observing a feature
{Ck} Frame of the camera pose taking a feature measure-

ment
{G j} Global frame of user j
{Cη j} Frame of camera pose of user j first observing a

feature
{Ck j} Frame of camera pose of user j taking a feature

measurement
{B} Manhattan-world frame
{Li} Frame of free line `̀̀i
{Vi} Frame of Manhattan line vi
{Li j} Frame of free line `̀̀i defined by user j
{Vi j} Frame of Manhattan line vi defined by user j

2p1 Position of frame {1} in frame {2}
2
1C Orientation of frame {1} in frame {2}
jxu State vector of user j
xτ Pairwise transformations between users’ frames
jp̆k Pose, velocity, and IMU biases of user j at step k
jp̆ All poses, velocities, and IMU biases of user j
jf Features observed by user j
jqB Orientation of user j in the Manhattan world
xa All users’ poses, velocities, and IMU biases
fc All common features
fa All features observed by only one user
fc j Common features observed by user j
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