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navigation through visual and inertial
paths
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Abstract

This paper addresses the problem of autonomous quadrotor navigation within indoor spaces. In particular, we focus on

the case where a visual map of the area, represented as a graph of linked images, is constructed offline (from visual and

potentially inertial data collected beforehand) and used to determine visual paths for the quadrotor to follow. In addition,

during the actual navigation, the quadrotor employs both wide- and short-baseline random sample consensuses

(RANSACs) to efficiently determine its desired motion toward the next reference image and handle special motions, such

as rotations in place. In particular, when the quadrotor relies only on visual observations, it uses the 5pt and 2pt algo-

rithms in the wide- and short-baseline RANSACs, respectively. On the other hand, when information about the gravity

direction is available, significant gains in speed are realized by using the 3pt + 1 and 1pt + 1 algorithms instead. Lastly,

we introduce an adaptive optical-flow algorithm that can accurately estimate the quadrotor’s horizontal velocity under

adverse conditions (e.g., when flying over dark, textureless floors) by progressively using information from more parts of

the images. The speed and robustness of our algorithms are evaluated experimentally using a commercial-off-the-shelf

quadrotor navigating in the presence of dynamic obstacles (i.e., people walking) along lengthy corridors and through

tight corners, as well as across building floors via poorly lit staircases.
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1. Introduction and related work

For a quadrotor to navigate autonomously within a GPS-

denied area, it must be able to determine its current location

using its onboard sensors and compute a path toward its

destination. One way to solve this problem indoors is to cre-

ate, typically offline, a dense 3D map and use it for both

localization and path planning. The high computational cost

and memory requirements of such an approach, however,

limit its applicability to small areas. Conversely, a building

can be described as a visual graph using images, and poten-

tially inertial data, collected beforehand. Such a representa-

tion has many advantages, such as scalability (no metric

global map needs to be constructed) and ease of implemen-

tation (the images can be collected by a person walking

through the building with the quadrotor). Moreover, visual

paths can be easily specified by a user by selecting the cor-

responding images along which the quadrotor needs to

navigate, or by simply indicating the start and end images.

The main challenge that such an approach poses, however,

is that of designing algorithms that efficiently and reliably

navigate the quadrotor along the visual path despite the lack

of scale in the reference trajectory.

A robot can be controlled to reach a specific destination

defined in the image space using visual servoing

(Chaumette and Hutchinson, 2006, 2007). Most visual ser-

voing approaches can be classified into two categories: (i)

position-based visual servoing, where the control input is

computed directly using a relative position, up to scale, and

orientation (pose) estimate; and (ii) image-based visual ser-

voing, where the control input is determined in the image

domain, while it is often assumed that the depth to the

scene is, at least approximately, constant (Chaumette and

Hutchinson, 2006). Prior work on visual servoing for
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quadrotors equipped with a downward-pointing camera has

addressed the problems of landing on a known target

(Bourquardez et al., 2009; Lee et al., 2012) and hovering

over an arbitrary target (Azrad et al., 2010). Furthermore,

for quadrotors equipped with a forward-facing camera,

Bills et al. (2011) classify the environment into corridors,

stairs, or ‘‘other,’’ in order to determine the appropriate

motion (turn, sideways, or upward) necessary for the robot

to continue its exploration.

In the context of navigating along a visual path, visual

servoing techniques have recently been applied to aerial

vehicles (Courbon et al., 2010; Nguyen et al., 2014). In par-

ticular, Nguyen et al. (2014) present an extension of the

‘‘funnel’’-lane concept of Chen and Birchfield (2009) to 3D

and apply it to the control of a quadrotor. Specifically, the

geometric constraints based on the image coordinates of the

reference features are used to determine the funnel region

within which the robot should move in order to match the

reference image. Then the desired motion of the quadrotor

is computed as the convex combination of the heading and

height required to stay within the funnel region and the

heading and height that the quadrotor followed during the

training phase. As a criterion for switching to the next refer-

ence image, an error measure is defined based on the root

mean square of the difference in the features’ pixel coordi-

nates between the reference and the current image.

Courbon et al. (2010) extend the visual servoing method

of Courbon et al. (2008) to the case of a quadrotor follow-

ing a visual path comprising a sequence of keyframe

images selected, during the experiment, by a person. In

contrast to three-view-geometry-based approaches (e.g.,

Diosi et al., 2011; Goedemé et al., 2005), Courbon et al.

(2010)use the position-based visual servoing algorithm

described by Chaumette and Hutchinson (2007) to control

the quadrotor. This method does not require triangulation

points but instead, given sufficient baseline, it uses epipolar

geometry to estimate the relative pose between the current

and the reference camera frames.

A key limitation of both Nguyen et al. (2014) and

Courbon et al. (2010) is that they cannot deal with rotations

in place (often required for navigating through tight

spaces), or, for the case of Courbon et al. (2010), with

translations through areas with only faraway features (e.g.,

featureless corridors). Moreover, in both cases, the quadro-

tor followed rather short and fairly simple, in terms of the

motions required, paths, comprising a short translation and

a wide turn in Nguyen et al. (2014), or no turns in Courbon

et al. (2010), where the quadrotor moved back and forth

between two locations connected via a direct path.

To address these limitations, we present a quadrotor

navigation algorithm based on position-based visual servo-

ing that employs both wide-baseline and short-baseline ran-

dom sample consensuses (RANSACs) to (i) distinguish

between translational and rotational motions and (ii) effi-

ciently switch between reference images. In particular, the

wide-baseline RANSAC estimates the relative orientation
Ic

Id
R and the unit vector of translation IctId

between two

frames fIcg and fIdg of the current and desired images,

respectively. The short-baseline RANSAC estimates the

relative orientation Ic

Id
R between two frames, fIcg and fIdg,

under the assumption of a very small baseline compared

with the depth of the scene. Once an initial relative pose

estimate, from either the wide-baseline or the short-

baseline RANSAC, is determined, a least-squares iterative

process is employed to refine it. Lastly, the desired 2.5D

motion is extracted from the five degrees-of-freedom (dof)

relative pose and provided to the quadrotor’s controller. As

a result of this process, the quadrotor is able to navigate

reliably over a wide range of motions comprising rotations

in place under challenging conditions (e.g., lengthy feature-

less corridors or areas with numerous specular reflections).

Additionally, the proposed method does not require the

images to be recorded by manually controlling the robot

through the reference paths, as is done in Courbon et al.

(2010) and Nguyen et al. (2014). Instead, one can easily

define the desired paths by simply walking through the

area of interest carrying the quadrotor. Lastly, we extend

the optical-flow algorithm of Honegger et al. (2013) to

reduce its sensitivity to lighting conditions and floor tex-

ture, and allow navigation through poorly 2lit regions and

over low-texture surfaces. The key contributions of this

work are as follows:

1. We employ wide-baseline (5pt (Nistér, 2004)) and

short-baseline (2pt) RANSAC-based algorithms to (i)

determine the type of motion (translational and rota-

tional versus rotational only) that the quadrotor needs

to undergo in order to reach the next location along its

path, and (ii) switch to the next reference image.

2. When information about the gravity direction is avail-

able (e.g., from an inertial measurement unit), we

employ the 3pt + 1 (Naroditsky et al., 2012) and 1pt

+ 1 algorithm for wide-baseline and short-baseline

RANSACs, respectively, significantly improving the

efficiency of the proposed autonomous quadrotor

navigation algorithm
1

.

3. We extend the optical-flow algorithm of Honegger

et al. (2013) to gradually acquire and process addi-

tional information from a larger part of the image, so

as to compute a robust and accurate estimate of the

quadrotor’s horizontal velocity.

4. We demonstrate the efficiency, accuracy, and robust-

ness of the proposed algorithm under adverse lighting

conditions onboard the Parrot Bebop quadrotor

(Parrot, Inc., 2018), navigating through areas compris-

ing lengthy corridors, tight turns, and stairs.

A preliminary version of this paper was presented in Do

et al. (2015), where we introduced the concept of using both

wide-baseline and short-baseline RANSACs and demon-

strated the robustness of this approach when navigating

through tight spaces. A limitation of Do et al. (2015), how-

ever, was that, owing to the high processing requirements

of the 5pt RANSAC (45 ms per image pair), the navigation
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algorithm could only run at 8 Hz on the quadrotor’s proces-

sor. To address this issue in this work, we employ the grav-

ity direction in the 3pt + 1 RANSAC to increase the

navigation algorithm’s speed to 15 Hz. Furthermore, we

improve the optical-flow algorithm previously used, allow-

ing the quadrotor to fly 2.5 times faster under a wide range

of lighting conditions.

The rest of this paper is structured as follows. In Section

2, we describe the offline and online phases of our

approach, as well as our extension to the PX4Flow optical-

flow algorithm. In Section 3, we validate our method

experimentally under challenging conditions. Finally, we

provide concluding remarks and outline our future research

directions in Section 4.

2. Technical approach

Our approach comprises two phases. In the first (offline)

phase, a visual-graph-based representation of the area of

interest is constructed using images collected by a person

walking through it. Then, given a start and an end image, a

feasible visual path is automatically extracted from the

graph, along with motion information (path segments that

include significant translational motion or only rotations in

place). In the second (online) phase, our position-based

visual servoing algorithm controls the quadrotor to succes-

sively minimize the relative rotation and baseline between

the images captured by its onboard, forward-facing camera

and the corresponding reference images of the visual path.

Additionally, to increase robustness, our navigation

approach employs a method based on a vocabulary tree

(Nistér and Stewénius, 2006) for relocalization inside the

previously constructed visual graph when losing track of

the reference image path.

Before presenting the details of our technical approach,

we should note that the Parrot Bebop quadrotor used in this

work (see Figure 1) has an attitude observer-controller for

stabilization, a forward-facing camera for visual navigation,

a downward-pointing camera for estimating optical flow,

and an ultrasonic sensor for measuring its distance from

the ground. In particular, the observer processes gyroscope

and accelerometer measurements, from an onboard inertial

measurement unit, to estimate its roll and pitch angles, yaw

rate, and thrust, while the controller uses this information

to regulate the corresponding commanded setpoints. Lastly,

we note that, despite the availability of metric information

from the horizontal velocity, which is estimated based on

the optical flow and the distance to the scene, we do not

use it to triangulate features and create a local map, as it

can be both unreliable and computationally expensive.

2.1. Offline phase

2.1.1. Map generation. A person carrying the quadrotor

walks through an area of interest, collecting images at 15

Hz. In addition, when available, we compute and save along

with each image the corresponding gravitational direction,

enabling us to run two different versions of RANSAC each

for wide baseline (5pt or 3pt + 1) and short baseline (2pt

or 1pt + 1). Subsequently, we extract fast retina keypoint

(FREAK) feature points (Alahi et al., 2012) from each

image and employ a vocabulary tree to generate a visual

map; the latter is represented as a visual graph whose nodes

correspond to the recorded images (see Figure 2). An edge

between two images signifies that these were matched by

the vocabulary tree and at least 30 point-correspondences

(or 17 when the gravity direction was available) passed the

wide-baseline or short-baseline RANSAC. Furthermore, we

assign weights to these edges, inversely proportional to the

number of common features (inlier matches) found between

linked images. This choice is justified by the fact that the

visual graph will be used to determine paths that the quad-

rotor should be able to navigate reliably in the image space

toward its destination.

At this point, we should note that the visual graph is

constructed in a matter of minutes even for large areas con-

taining tens of thousands of images. Moreover, it can be

easily updated by adding or replacing subsets of images

corresponding to new or altered regions of a building.

2.1.2. Path specification. The visual graph is used to com-

pute paths between the quadrotor’s start and end locations,

possibly via intermediate points. Specifically, consider the

graph shown in Figure 2. Assume that the quadrotor knows

its current location (e.g., it is provided by the user, automat-

ically determined using the vocabulary tree, or saved from

the previous run), corresponding to image node Is. Then,

the user specifies a destination image Ig in the visual graph

and the reference path is determined automatically by

employing Dijkstra’s algorithm (Cormen et al., 2001). This

process is easily extended to include intermediate locations

(e.g., Ig1
, Ig2

, . . . , Ign
), by simply resetting as the start of the

next path segment the end image of the previous one (e.g.,

Isi + 1
= Igi

, i = 1, . . . , n). Note that, for the rest of the paper

and to improve readability, we abuse the notation and use I‘
to represent both the ‘th image and the camera frame fI‘g
from which the image was taken. For the reader’s conveni-

ence, we describe our notation in Appendix B.

Fig. 1. The Parrot Bebop quadrotor equipped with a 1808 wide

field of view camera, an optical-flow sensor, and an ARM-based

processor.

Do et al. 3



Once the visual path P= fIs1
= Ij, Ij + 1, . . . , Ig =

Ij + Ng is extracted from the visual graph, we prune images

that are very close to each other and only keep the ones

that have substantial translational or rotational motion

between them. To do so, we use an iterative process that

starts from the reference image I r1 = Ij and moves along the

path matching FREAK features, using both the wide-

baseline and short-baseline RANSAC algorithms, until it

finds the first image, Ij + m, m � 1, that either has more

wide-baseline than short-baseline RANSAC inliers, or for

which the relative yaw angle between I r1 and Ij + m is

greater than 108. In the first case, we declare that the quad-

rotor is in translation—otherwise, it is in rotation—and set

Ij + m, as the next reference image I r2. The resulting path

Ppruned = fI r1, I r2, . . . , I rng is provided to the quadrotor,

along with two additional pieces of information: (i) we spe-

cify which images correspond to rotation-only motion and

compute the yaw angle between consecutive rotation-only

images; (ii) we compute the FREAK features extracted

from each reference image, along with their coordinates

and the direction of gravity. The former is useful if the

quadrotor gets lost (see Section 2.2.4), while the latter is

used by the quadrotor for efficiently finding and matching

its next reference image through the process described

hereafter.

2.2. Online phase

2.2.1. System state determination. Firstly, consider the

wide-baseline case; we are interested in computing

the desired motion that will bring the quadrotor close to the

reference image I rk 2 P. To do so, we seek to estimate the

quadrotor’s five dof transformation with respect to I rk , when

only visual information is available, by extracting and

matching features between its current, It, and reference, I rk ,

images. Specifically, given five pairs of feature matches

between It and I rk, we employ the wide-baseline 5pt

RANSAC (Nistér, 2004) to compute the five dof transfor-

mation from It to I rk based on the epipolar constraint for the

set of feature correspondences (j = 1, . . . , 5)

I r
kbTfj

I r
k tIt

×
� �I r

k

It
RItbfj = 0 ð1Þ

where I r
kbfj ,

Itbfj are the (unit) bearing vectors to feature fj
from frames fI rkg and fItg, respectively; I r

k tIt
is the

unit translational vector of fItg in fI rkg; and
I r
k

It
R is the rota-

tional matrix describing the relative orientation between

fItg and fI rkg.
If the gravity direction is known for both the current,

Itg, and the reference, I r
kg, image, we employ the wide-

baseline 3pt + 1 RANSAC (Naroditsky et al., 2012) to

compute the five dof motion from It to I rk , based on the

relation between the gravitational directions of the two

images

I r
kg=

I r
k

It
RItg ð2Þ

and only three pairs of feature matches satisfying equation

(1). Note that since the minimal solver of Naroditsky et al.

(2012) employs a fourth-order polynomial equation whose

solution is known in closed form, it is significantly faster

than that of Nistér (2004), which is based on the analytical

solution of a 10th-order polynomial equation. Furthermore,

by requiring three, instead of five, feature pair matches, the

3pt + 1 RANSAC requires a significantly smaller number

of hypotheses than does the 5pt RANSAC.

Fig. 2. Offline phase. The area of interest is described as a visual graph, whose nodes correspond to images, while edges link images

containing a sufficient number of common features for reliable visual servoing between them. In the visual graph, Is1
and Ig denote

the start and goal images, respectively, while Is2
, . . ., Is5

signify intermediate goal locations along the quadrotor’s path specified by the

user. The grayscale color of the visual graph codes the different map segments, while its thickness reflects the number of neighboring

images that each vertex image has.
FREAK: fast retina keypoint; RANSAC: random sample consensus; SB: short-baseline; WB: wide-baseline.
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At this point, we should note that the motion estimate

from equation (1), and potentially equation (2), is not reli-

able when the baseline between It and I rk is short. In partic-

ular, when the distance between two images is significantly

shorter than the distance to the feature from either image

(i.e., I r
k dIt
�It dfi ,

I r
k dfi) the five dof transformation degener-

ates into a three dof rotation-only transformation (see Do

et al., 2015, for more details) between It and I rk . This three

dof transformation can be computed (see Appendix C.1) by

employing either (2pt RANSAC) two pairs of feature corre-

spondences, satisfying

I r
kbfi =

I r
k

It
RItbfi ð3Þ

or (1pt + 1 RANSAC) only a single pair of such feature

matches and the direction of gravity (see equation (2)).

Another issue of concern is that the appearance-based

feature matching between It and I rk (i.e., the wide-baseline

RANSAC’s input) is not always reliable (e.g., owing to

adverse lighting conditions or image blur). To address these

challenges, we model our system as a hybrid automaton H,

as follows.

Definition 1. H= (L, x, E), where:

L is the set of discrete states including:

– ‘0: wide baseline (nominal condition)

– ‘1: short baseline (rotation in place is necessary or ref-

erence image switching)

– ‘2: lost mode due to, e.g., failure in the appearance-

based feature matching.

� x(t, k)= ½It, I rk , r(t, k)� where r(t, k) is the desired

motion for minimizing the relative pose between It

and I rk .
� E is the set of relations governing transitions between

the states in L= f‘0, ‘1, ‘2g.

Given H, and in order to complete the reference visual

path P, the system must ideally iterate between two steps

until the last element of P is reached. (i) When in ‘0, we

compute the motion r and control the quadrotor so as to

bring the system to state ‘1 (see Section 2.2.2). (ii) When in

‘1, and if there is no significant rotation between It and I rk,

we switch I rk to the next reference image in P (see Section

2.2.3), and the system, by design, returns to state ‘0. In the

event of an external disturbance, however, the system may

reach state ‘2. In this case, a recovery procedure is executed

to attempt to bring the system back to ‘0 or ‘1 (see Section

2.2.4).

To accurately classify the state of the system as ‘0, ‘1,
or ‘2 based on It and I rk, we use the process summarized in

Figure 3, and define the relations in E= fe0, e1, e2g in the

following three steps.

� Step 1. We first extract and match FREAK features in

It and I rk, and define as Sf (It, I rk) the set of all feature

correspondences. Note that if the condition for suffi-

cient feature matches e0 : jSf j � j (where j = 30 or 17

for the 5pt and 3pt + 1 RANSACs, respectively, and

jSf j is the cardinality of the set Sf ) is satisfied, then the

system proceeds to Step 2 of the current state; other-

wise it transitions to state ‘2 (see Figure 3).

� Step 2. Given the bearing vectors, Itbf and I r
kbf , from

both camera frames, It and I rk, to each feature f, we

employ the wide-baseline (5pt or 3pt + 1) RANSAC

to compute the geometric relation (
I r
k

It
R, I r

k tIt
) between It

and I rk, as well as the set of features whose reprojection

error (Hartley and Zisserman, 2004) is within a thresh-

old e1 (the error tolerance for outlier rejection (Fischler

and Bolles, 1981)). At this point, we require that the

condition e1 : jSWBj � j, where j = 30 or 17 for the

5pt and 3pt + 1 RANSACs, respectively, (i.e., the

number of wide-baseline RANSAC inliers), is satisfied

in order to proceed to Step 3; otherwise, the system

transitions to state ‘2 (see Figure 3).
� Step 3. We distinguish between the states ‘0 and ‘1.

Specifically, as previously mentioned, when the base-

line is short, the five dof degenerate into a three dof,

rotation-only constraint that is satisfied by all the wide-

baseline inliers. Our algorithm uses this observation to

Fig. 3. Online phase. The steps and transitions between the

different states of the automaton H.
FREAK: fast retina keypoint; RANSAC: random sample consensus; SB:

short baseline; WB: wide baseline.
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determine whether there is sufficient baseline between

the current, It, and reference, I rk , images. In particular,

we employ the short-baseline (2pt or 1pt + 1)

RANSAC on the features f 2 SWB to compute the

rotation
I r
k

It
R between the two images and determine

SSB = ff 2 SWB j 1�I r
kbTf It

I r
k RItbf \e2g, which is the

subset of wide-baseline inliers that are also short-

baseline inliers. Lastly, and to compensate for the noise

in the measurements and the randomness of RANSAC,

instead of requiring jSSBj= jSWBj, we employ the con-

dition e2 : jSSBj=jSWBj.0:94 to declare a small base-

line (i.e., state ‘1).

Depending on the state of our system (‘0, ‘1, or ‘2), in

what follows, we describe the process for controlling the

quadrotor.

2.2.2. Wide baseline (‘0)

2.2.2.1. Improving the motion estimate. In practice,

when the quadrotor navigates through long corridors or

open spaces, Sf may contain features at various depths,

some of which (typically the faraway ones) may negatively

affect the motion estimate’s accuracy. Note that such fea-

tures satisfy the short-baseline RANSAC. To remove them,

we define S0WB = SWBnSSB, rerun the wide-baseline

RANSAC on the features f 2 S0WB, and use the winning

hypothesis to initialize an efficient iterative least-squares

algorithm (see Appendix C.2) to improve the accuracy of

the estimated five dof motion between It and I rk .

2.2.2.2. Extracting the desired 2.5D motion. At this

point, we note that although the estimated relative pose

between It and I rk may comprise five dof (three for the rela-

tive roll, pitch, yaw, and two for the unit vector, t, of trans-

lation), given the kinematic and actuation constraints of the

quadrotor (e.g., it cannot achieve non-zero roll or pitch

angle while staying in place), our controller seeks to match

the desired motion only along three dof: the tx, ty projection

of the desired unit vector, t, of translation on the horizontal

plane
2

, and the desired (relative) yaw angle I r
k ĉIt

. Moreover,

and to maintain an almost constant-velocity flight, we scale

tx and ty by v0 (the maximum velocity that the optical-flow

algorithm can measure) and obtain the desired motion

vector

r=

vdx
vdy

cd

2
4

3
5=

txv0

tyv0
I r
k ĉIt

2
4

3
5 ð4Þ

Note also that when information (e.g., from ultrasound

sensors) about nearby obstacles is available, we can modify

r so that the quadrotor can smoothly avoid obstacles while

maintaining its course (see Do et al., 2015, for more

details). After finalizing the desired motion r, we provide it

to the proportional–integral–derivative (PID) controller to

compute the control actions.

2.2.2.3. Controller. To determine the control input,

uk(t) (roll, pitch, yaw rate, and thrust), that we must pro-

vide to the quadrotor’s attitude controller so as to achieve

the desired velocity, we employ the vehicle’s kinematic

equations, linearized about the equilibrium (near-hover

condition)

_vx(t)
_vy(t)

� �
= g

u(t)
�f(t)

� �
ð5Þ

€z(t)=
1

m
t(t)� g ð6Þ

where g is the magnitude of gravity, m is the quadrotor’s

mass, z is the quadrotor’s altitude in the inertial frame, and

f(t), u(t), and t(t) are the roll, pitch, and thrust of the

quadrotor in egocentric coordinates, respectively.

To compute the velocity error, we use the estimates,

v̂x, v̂y, from the optical-flow sensor, to form

evx
(t)

evy
(t)

� �
=

vdx (t)� v̂x(t)
vdy (t)� v̂y(t)

� �
ð7Þ

Furthermore, the height error, ez, is defined as the differ-

ence between the desired altitude and the estimated height ẑ

from the downward-pointing ultrasonic sensor

ez(t)= zd(t)� ẑ(t) ð8Þ

Lastly, based on equations (6) to (8) and ĉ in equation (4),

we form a PID controller that computes the desired control

input to the system as

uk(t)=

ud(t)
fd(t)
td(t)
_c
d
(t)

2
664

3
775

=

kp, vx
evx

(t)+ ki, vx

R
evx

(t)dt

�kp, vy
evy

(t)� ki, vy

R
evy

(t)dt

kp, zez(t)+ ki, z
R

ez(t)dt + kd, z _ez(t)
kp,ccd

2
664

3
775

ð9Þ

The gains kp, ki, and kd that ensure high response, zero

tracking error, and robustness were found as described by

Franklin et al. (1997). Note also that, in order to keep the

quadrotor in the near-hover condition, in practice, we bound

the magnitude of the desired controller inputs for roll and

pitch to be within 158.

Figure 4 depicts the three-control-loop implementation

of our navigation algorithm on the Parrot Bebop quadrotor.

The outer loop takes as its input It, I
r
k and determines the

desired 2D velocity, vdx , v
d
y , and the yaw angle cd at 12 Hz

(see Section 2.2.2.1). The velocity and altitude controller

(middle loop) takes as its input z and Inadir (the image from

the nadir-pointing camera at time t) and provides the roll,

pitch, and thrust setpoints at 40 Hz to the attitude control-

ler, which in turn, runs at 100 Hz.
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2.2.3. Short baseline (‘1). In the case of a short baseline,

we detect whether any rotational motion is necessary to

minimize the relative yaw, I r
k cIt

, between It, and I rk . To do

this, we first improve the rotation matrix estimate,
I r
k

It
R, by

employing the least-squares method of Horn (1987) on the

features f 2 SSB using as initial estimate that from the min-

imal solver of the short-baseline (2pt or 1pt + 1)

RANSAC. After extracting the yaw component, if

jI
r
k cIt
j.t3

3

, we send the desired rotation-in-place motion

rT = ½0 0 I r
k cIt
�T to the controller to minimize the relative

yaw between It, and I rk ; otherwise, we switch to the next

reference image along the path P.

Alternatively, we can leverage the yaw angle (computed

offline—see Section 2.1.2) between the first and last

rotation-only reference images to speed up the execution of

this path segment. In this case, the precomputed relative yaw

angle is provided to the controller to perform a ‘‘blind’’ rota-

tion in place. Once this is complete, the quadrotor queries the

vocabulary tree, either to confirm that the last rotation-only

reference image of the current path segment has been reached

or to determine the remaining rotation between the current

image and the last rotation-only reference image.

2.2.4. Lost mode (‘2). There are four possible circum-

stances in which a quadrotor can get lost:

1. It enters a featureless region.

2. It enters a region where the result from the FREAK

feature matching between It and I rk is unreliable.

3. It significantly deviates from its current path, in order

to avoid an obstacle.

4. Dynamic obstacles (e.g., people) obstruct its view or path.

Our recovery method is as follows. While hovering, the

quadrotor queries the vocabulary tree with It and succes-

sively evaluates the returned images to find the image that

has at least 20 features in common with It that pass the

wide-baseline RANSAC. If this search fails for the top 10

images, the quadrotor switches to a ‘‘blind’’ motion strategy

following the same type of motion as before it was lost

(i.e., translation or rotation, based on the last reference

image where it computed good matches) for 0.5 s and then

re-attempts to retrieve a good reference image I rbest. This

iterative process is repeated 10 times before the quadrotor

is declared lost, in which case, it autonomously lands.

At this point, we should note that during our experi-

ments when flying within the same floor (see Section 3.3)

the quadrotor enters state ‘2 on average once or twice, pri-

marily owing to external disturbances (e.g., people walking

in front of it or high-speed airflow from the air-conditioning

vents). The number of times that the quadrotor gets lost

increases to five when traveling across floors (see Section

3.4). This is due to the additional challenges that navigation

through dark, featureless staircases poses. Note though that

in all cases where the 3pt + 1 RANSAC was employed for

wide-baseline estimation, the quadrotor was able to reloca-

lize and successfully complete its path.

2.3. Optical flow

In this section, we describe our extension of the PX4Flow

algorithm of Honegger et al. (2013). The original algorithm

first extracts a 64× 64 patch in the center of the downward-

pointing camera’s image and computes the optical flow of

each of the 25 8× 8 pixel blocks within the patch, based on

the sum of absolute differences with a search area of half

the window size (i.e., 5 pixels in the x and y directions of

the second image). Then, subpixel refinement is applied to

obtain better matching results with half-pixel accuracy.

Finally, the algorithm constructs two histograms of pixel

displacements in the x and y directions based on the flow

from the 25 blocks and picks the one with the maximum

number of votes as the optical flow for that frame.

In poor lighting conditions, however, or when flying

over low-texture surfaces, the patch in the center of the

image might not have sufficient texture, or the minimum

sum of absolute differences for the chosen pixel blocks

might be very large, leading to erroneous optical-flow esti-

mation. To address this issue, we propose the following

extension of the PX4Flow algorithm. First, we split the

image of size 320× 240 pixels into nine patches, each of

pixel size 64× 64 (see Figure 5). Then we start by comput-

ing the histogram of optical flow based on the PX4Flow

algorithm for the center patch of the image (i.e., patch 1 in

Figure 5) and count the number of valid pixel blocks. In

particular, for a chosen pixel block Pb, if the sum of hori-

zontal and vertical gradients of the 4× 4 patch centered in

Pb (i.e., its textureness) is larger than a threshold g1 and

the minimum sum of absolute differences in the search area

is less than a threshold g2, Pb is considered to be a valid

pixel block, where g1 and g2 are determined based on the

camera’s specifications. Subsequently, if the number of

valid pixel blocks, among 25 chosen ones, is less than or

equal to 20, we proceed to compute the optical flow from

additional patches, and accumulate their histograms, fol-

lowing the patch order shown in Figure 5. This process

continues until the number of valid pixel blocks in the his-

togram is larger than 20. The reason behind this order of

patch selection (i.e., starting from the center and moving

outward) is that the pixels far away from the center have

more radial distortion. Furthermore, as is evident from

equation (10), they are affected by rotations more than are

those closest to the center

_u = �fcvx + uvz

h
� fcvy + vvz +

uvvx�u2vy

fc

_v =
�fcvy + vvz

z
+ fcvx � uvz +

v2vx�uvvy

fc

ð10Þ

where fc is the focal length of the camera, u and v are the

coordinates of a pixel p with respect to the center of the

image, _u and _v are the optical-flow velocities of p, (vx, vy,

vz) and (vx, vy, vz) are the linear and rotational velocities,
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respectively, of the downward-pointing camera in egocentric

coordinates, and z is the vertical coordinate of the 3D point

to which p corresponds. Since our motions are mostly 2.5D,

the distance of any 3D point in the camera’s view is almost

constant, and thus vz is negligible. By employing this

assumption, we can estimate vx, vy from the computed opti-

cal flow _u, _v, the rotational velocities vx, vy, vz estimated

from the inertial measurement unit, and the distance to the

ground z measured by the ultrasonic sensor, as

vx =
z

fc
� _u� fcvy + vvz +

uvvx � u2vy

fc

� �

vy =
z

fc
� _v + fcvx � uvz +

v2vx � uvvy

fc

� �

3. Experimental results

In this section, we present experimental results for validat-

ing both our extension of the PX4Flow algorithm and the

ability of the quadrotor to fly autonomously through image-

defined paths. In the optical-flow experiment (see Section

3.2), we show the difference in performance between our

proposed approach and the original approach using data

acquired in a dark staircase inside the Walter Library at the

University of Minnesota. Next, in Sections 3.3 and 3.4,

respectively, we describe autonomous navigation experi-

ments using two Parrot Bebop quadrotors in two scenarios:

(i) a 75 m indoor area, within the same floor, to evaluate the

algorithm’s performance when moving relatively quickly

(the velocity, v0 in equation (4), was set to 2 m/s, which is

the maximum velocity that can be measured by the optical-

flow algorithm); (ii) a 150 m indoor area that requires tran-

sitioning between two floors through two staircases. In this

case, v0 was set to 1.2 m/s.

3.1. System setup

The Bebop carries an Invensense MPU-6050 MEMS inertial

measurement unit, a downward-pointing Aptina MT9V117

camera (538 field of view, set to 320× 240 pixels resolu-

tion) used for optical flow, an ultrasonic sensor for measur-

ing the distance to the ground, and a forward-facing Aptina

MT9F002 camera (1808 field of view, set to 300× 264 pix-

els resolution) that we use for visual navigation. All compu-

tations are performed in the Bebop’s real-time onboard

ARM Cortex A9 800 MHz dual-core processor.

3.2. Optical-flow experiment

We implemented the proposed optical-flow algorithm using

ARM NEON and achieved an average time of 0.95 ms for

images of size 320× 240 pixels. Thus, for a frame rate of

60 Hz, the total time (per second of flight) for computing

the optical flow is approximately 57 ms; this is sufficient

for real-time operation. To demonstrate the robustness of

our proposed extension, we collected two datasets of

roughly 300 images using the Parrot Bebop at the Walter

Fig. 5. The image is divided into nine 64× 64 pixel patches.

The number indicates the order in which each patch is

considered by the proposed optical-flow algorithm. Note that

Honegger et al. (2013) uses only the center patch (1).

Fig. 4. System block diagram. The double-line blocks denote components of our algorithm described in Sections 2.2.1 (H) and

2.2.2.3 (controllers).
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Library stairs; the first was acquired at a moderate speed

(0.5 m/s), while the second was acquired at a relatively

faster speed (2.0 m/s). Subsequently, we integrated the flow

estimates from consecutive image pairs, for (i) the

PX4Flow algorithm, (ii) our proposed extension, and (iii)

the Lucas–Kanade method, which is considered as ground

truth. The resulting paths, in pixel space, are shown in

Figure 6. It is evident that our algorithm is significantly

more robust than the original PX4Flow algorithm under

fast motions, while it has similar accuracy and processing

requirements when moving slowly. To better understand

where the gain in performance comes from, in Figure 7, we

show the histograms of the pixel blocks’ displacements

resulting from the image pair shown in Figure 8. Notice

that the blue bars in Figure 7, which depict histograms

from the PX4Flow algorithm, do not have a distinct flow

peak, suggesting inaccurate optical-flow estimation. In con-

trast, the histograms from our proposed algorithm, shown

as yellow bars, have a clear peak, resulting from the

additional optical-flow information collected from the extra

image blocks used.

3.3. Experiments: Set 1 (within the same floor)

In these experiments, which took place in the Walter

Library’s basement, the two quadrotors used had to follow

a 75 m long path comprising translational-motion segments

through open spaces, as well as rotations in place in order

to navigate through narrow passages. Figure 9 shows the

blueprint of the experimental area with the reference visual

path (red bold line) overlaid, as well as snapshots of the

quadrotor in flight (for videos of the quadrotor’s full flights

using 5pt/2pt and 3pt + 1/1pt + 1, see Extensions 1 and

2, respectively). Figures 10 and 11 show examples of

matched feature inliers between the current and reference

images for the wide-baseline and short-baseline cases,

respectively. In both instances, the 3pt + 1 and 1pt + 1

RANSAC inlier ratios (0.675 and 0.92 in Figures 10 and

11, respectively), were used to determine whether the con-

figuration between the current, It, and reference, I rk , images

corresponds to a wide-baseline or short-baseline case.

During the experiment, and depending on the wide-

baseline or short-baseline choice, the Bebop was able to

complete the reference trajectory (see Table 1) in a total of

97–240 s. Within this interval, the quadrotor performs

mostly translational motion for 73–180 s, at an average

Fig. 6. Comparison of different methods (Lucas–Kanade (LK),

PX4Flow, and our proposed extension) for computing and

integrating the optical flow over two datasets for (top) slow and

(bottom) fast motions.

Fig. 7. Histograms of the optical flow in the x and y directions.

Blue bars depict the histograms from the PX4Flow algorithm.

Yellow bars indicate the histograms from our proposed extension

to the PX4Flow algorithm.
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speed of 1.0–0.4 m/s. Specifically, Table 1 summarizes the

performance results, in terms of speed, from five experi-

ments where two different options for wide-baseline and

short-baseline RANSAC were employed. In particular, in

the first three experiments, the 3pt + 1 and 1pt + 1 algo-

rithms were used in the wide-baseline and short-baseline

RANSACs, respectively, achieving up to 2.5 times speedup,

compared with the case when the 5pt and 2pt algorithms

were used instead. The significant gain in navigation speed

is better explained by noting the substantial difference in

the processing requirements between the 5pt and 3pt + 1

minimal solvers, and thus between the corresponding

RANSACs. These timing results for the Bebop’s processor

are listed in Table 2. As evident from these comparisons,

employing the gravity direction in the motion-estimation

algorithm leads to significant gains in speed during autono-

mous visual navigation.

3.4. Experiments: Set 2 (flight across two floors

through stairs)

This set of experiments took place in the Walter Library’s

basement and first floor, which are connected through two

staircases (south–north), each comprising two flights of

stairs. In this situation and owing to the lengthier trajectory

(150 m), the quadrotor is more likely to lose track of the

Fig. 8. Representative consecutive image pairs from the Walter Library stairs, University of Minnesota. The red circle shows the same

corner in the two images with their pixel coordinates.

Fig. 9. Experiments: Set 1. (top) Blueprint of the experimental

area with the reference trajectory (1–. . .–6–1) overlaid. (bottom)

Snapshots of the Bebop along its path (locations 1–6).

Fig. 10. Wide-baseline case: (left) 3pt + 1 and (right) 1pt + 1

RANSAC-based matching between two pairs of images (top: I rk ;

bottom: It) from the Bebop’s forward-facing camera.
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reference image, and enter the lost mode (Figure 12 shows

an example of an online query image and the returned

images, along with the number of inlier matches from the

vocabulary tree). Furthermore, the quadrotor has to fly

through two staircases, where the high rate of change of the

ultrasonic sensor’s height measurement caused the vision-

only approach (5pt and 2pt RANSACs) to fail to complete

the trajectory. The main challenge in this experiment was

accurate estimation of the optical flow. In particular, the

stairs comprise textureless steps and parts of the staircases

(transitions between images 4–6 and 7–9 in Figure 13) are

featureless and quite dark, compared with the rest of the

path. In addition, there was regular pedestrian traffic in the

experimental area, with people often walking in front of the

quadrotor (see Figure 14), disturbing its path-following pro-

cess. Despite the adverse conditions, the quadrotor was able

to navigate through this path successfully, and achieved the

performance summarized in Table 3. Figure 13 shows the

blueprint of the experimental area with the reference visual

path (red bold line) overlaid, as well as snapshots of the

Fig. 11. Short-baseline case: (left) 3pt + 1 and (right) 1pt + 1

RANSAC-based matching between two pairs of images (top: Ir
k ;

bottom: It) from the Bebop’s forward-facing camera.

Table 1. Performance comparison between the 3pt + 1/1pt + 1 and 5pt/2pt-based autonomous navigation algorithms for the single-

floor experiments (Set 1).

Experiment Length, m Total time, s Translational time, s Average speed, m/s

3pt + 1 75 97 73 1.0
3pt + 1 75 130 84 0.9
3pt + 1 75 133 96 0.8
5pt 75 210 146 0.5
5pt 75 240 180 0.4

Table 2. Execution time comparison between the 3pt + 1 and 5pt minimal solvers and corresponding RANSACs on the Bebop’s

processor.

Implementation Solver, ms RANSAC, ms Frequency, Hz

5pt 1.3 45 8
3pt + 1 0.13 5 15

Fig. 12. Example of online image query when in lost mode. The

top image is the one that the quadrotor acquired online but was

not able to match with the reference image. The bottom three

images are the ones returned by the vocabulary tree (VT) after

querying with the current quadrotor online image.
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Bebop in flight. Extension 3 is a video of the quadrotor suc-

cessfully completing this experiment.

4. Conclusion and future work

In this paper, we presented a visual servoing algorithm for

autonomous quadrotor navigation within a previously

mapped area. In our work, the map is constructed offline

from images collected by a user walking though the area of

interest and carrying the quadrotor. Specifically, the visual

map is represented as a graph of images linked with edges

whose weights (cost to traverse) are inversely proportional

to their number of common features. Once the visual graph

is constructed, and the start, intermediate, and goal loca-

tions of the quadrotor are given as inputs, the desired path

is automatically generated as a sequence of reference

images. This information is then provided to the quadrotor,

which estimates, in real time, the motion that minimizes

the difference between its current and reference images,

and controls its roll, pitch, yaw rate, and thrust for achiev-

ing this.

Besides the ease of path specification, a key advantage

of our approach is that by employing a mixture of wide-

baseline and short-baseline RANSAC algorithms online for

(i) determining the type of desired motion (translation and

rotation versus rotation in place) and (ii) selecting the next

reference image, the quadrotor is able to navigate reliably

through areas comprising lengthy corridors, as well as nar-

row passages. Additionally, it is able to cope with static

and moving obstacles and recover its path after losing track

Fig. 13. Experiments: Set 2. Blueprint of experimental area, reference path, and snapshot of the Bebop during flights. Note that the

stairs area is shown in images 5–8.

Fig. 14. Example images of people walking or standing in

Bebop’s path.

Table 3. Performance of the 3pt + 1/1pt + 1-based autonomous navigation algorithm for the multi-floor experiments (Set 2).

Experiment Length, m Total time, s Translationaltime, s Average speed, m/s

3pt + 1 150 250 154 1.0
3pt + 1 150 235 181 0.8
3pt + 1 150 274 213 0.7
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of its reference image. Moreover, we have shown that by

employing information about the direction of gravity in the

wide-baseline and short-baseline RANSAC algorithms

(i.e., using the 3pt + 1/1pt + 1 instead of the 5pt/2pt mini-

mal solvers) we are able to realize significant gains in pro-

cessing, and hence speed of navigation. Lastly, critical

improvements in robustness, especially when flying over

low-texture areas, were achieved by extending the PF4Flow

optical-flow algorithm to use progressively larger parts of

the downward-pointing camera’s images for estimating the

vehicle’s horizontal velocity. The performance of the pro-

posed autonomous navigation algorithm was assessed in

two sets of experiments over two lengthy paths (75 m and

150 m), across two floors, and under challenging condi-

tions (e.g., moving obstacles, specular reflections, feature-

less corridors, textureless stairs, dark areas) while running

in real time on the resource-constrained processor of a

commercial off-the-shelf, low-cost quadrotor.

As part of our future work, we plan to assess and improve

the performance of our autonomous quadrotor navigation

algorithm for the case where the images used for constructing

the visual map were recorded by a different camera (e.g.,

from another type of quadrotor). Robustness to large changes

in the appearance of areas of the building, as well as the light-

ing conditions, are also within our future interests.
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Notes

1. In this case, the minimal solver remains the same, but we improve

robustness to outliers, since the algorithm requires only one,

instead of two, point feature correspondences, along with the

gravity direction. Note that, compared with the 5pt algorithm, the

3pt+ 1 RANSAC requires fewer (17 versus 30) inliers to esti-

mate the five dof transformation between two images, thus allow-

ing operation in areas with only a few features.

2. Note that since all images were recorded at about the same

height, the z component of the desired motion estimate is

rather small after the first reference image and we subse-

quently ignore it. Instead, we use the distance-to-ground mea-

surements to maintain a constant-altitude flight.

3. This threshold depends on the onboard camera’s field of view

and is selected so as to ensure a significant overlap (.80%)

between the current camera image and the next reference image.
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Appendix A Index to multimedia extensions

Archives of IJRR multimedia extensions published prior to

2014 can be found at http://www.ijrr.org, after 2014 all

videos are available on the IJRR YouTube channel at http://

www.youtube.com/user/ijrrmultimedia

Table of multimedia extension

Appendix B Notation

I r
kbfi Unit bearing vector of feature fi in framefI rkg

Itbfi Unit bearing vector of feature fiin framefItg
Il Image number l in the visual graph
Isj

Image set point j from the user
I rk Reference image k along the visual path
fI rkg Camera framewhen image I rk is acquired
It Current image taken at time instant t

fItg Camera framewhen image It is acquired
I r
kpfi

Position of feature fi in frame fI rkg
Itpfi

Position of feature fi in frame fItg
I r
kpIt

Position of frame fItgin frame fI rkg

I r
k

It
R Rotationalmatrix describing orientation of fItg inframe fI rkg

I r
k tIt

Unit translational vector of frame fItg inframe fI rkg

Appendix C Mathematical miscellany

C.1 2pt/1pt + 1 RANSAC minimal solver

Consider two unit bearing measurements I1bfi ,
I2bfi to a fea-

ture fi from two images, and assume that the motion

between them is purely rotational, i.e.

I2bfi =R(I2

I1
�q)I1bfi ð11Þ

where I2

I1
�q is the unit quaternion of rotation. When only

visual information is available, finding I2

I1
�q requires two fea-

ture matches between I1 and I2 to satisfy equation (11). We

refer to this as the 2pt-minimal problem. Conversely, when

the direction of gravity is known for both images, i.e.

I2 ĝ=R(I2

I1
�q)I1 ĝ ð12Þ

we only need one feature match to satisfy equation (11).

We refer to this problem as the 1pt + 1 minimal problem.

In summary, in both cases, we need two pairs of linearly

independent unit vectors (u1, u2), and (v1, v2), to satisfy

equation (11) or equation (12) (or equivalently equation

(13)), where u1 = I1bf1 and v1 = I2bf1, while u2 = I1bf2 and

v2 = I2bf2 , or u2 = I1 ĝ and v2 = I2 ĝ: In what follows, we

prove the following theorem.

Theorem 1. Given two pairs of unit vectors, (u1, u2) and

(v1, v2), where u1 and u2 are linearly independent,

satisfying

vi =R(�q)ui , i = 1, 2 ð13Þ

the unknown quaternion of rotation �qT = q q4½ �T can be

found as

if (v1 � u1)× (v2 � u2) 6¼ 0 then

�q = g
(v1 � u1)× (v2 � u2)
(v1 + u1)

T(v2 � u2)

� �

else

if vT1 (u1 × u2) 6¼ 0 then

�q = h
(v1 × v2)× (u1 × u2)

(v1 × v2)
T(v1 × v2 + u1 × u2)

� �

else

if u1 = v1 and u2 = v2 then

�q =
0

1

� �

else

Extension Media type Description

1 Video Single floor, vision only
2 Video Single floor, vision plus gravity
3 Video Two floors, vision plus gravity
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�q =
1

vi + uik k
vi + ui

0

� �
, vi + ui 6¼ 0 2 f1, 2g

end if

end if

end if

Proof. In what follows, we present an algebraic derivation

of the preceding relations. A geometry-based proof of this

result is shown in Reynolds (1998).

Employing the quaternion relations given by Trawny

and Roumeliotis (2005), we have

vi =R(�q)ui

,
vi

0

" #
= �q�

ui

0

" #
� �q�1

,
vi

0

" #
� �q� �q�

ui

0

" #
= 0

, L
vi

0

" # !
�R

ui

0

" # !" #
q

q4

" #
= 0

,
� vi ×b c vi

�vTi 0

" #
�

ui ×b c ui

�uTi 0

" #" #
q

q4

" #
= 0

,
� vi + ui ×b c vi � ui

�(vi � ui)
T 0

" #
q

q4

" #
= 0

,
� vi + ui ×b cq + (vi � ui)q4 = 0

�(vi � ui)
Tq = 0

�

C.1.1 Case 1. (v1 � u1)× (v2 � u2) 6¼ 0

From equation (15) for i = 1, 2, 9g 6¼ 0

q= g(v1 � u1)× (v2 � u2) ð16Þ

Substituting equation (16) in equation (14) for i = 1 yields

(v1 � u1)q4 = g v1 + u1 ×b c(v1 � u1)× (v2 � u2)

, (v1 � u1)q4 = g(v1 � u1)(v1 + u1)
T(v2 � u2)

ð17Þ

) q4 = g(v1 + u1)
T(v2 � u2) ð18Þ

where equation (17) is obtained by

a × cbb ×b c= baT � (aTb)I, while q4 in equation (18) is

found by noting that v1 6¼ u1, otherwise Case 1 will not

hold. Note that the solution will not change if we find q4 by

substituting q into equation (14) for i = 2 (instead of i = 1).

In such a case, we will get q04 = � g(v2 + u2)
T(v1 � u1).

Note though that

q4

g
� q40

g
= (v1 + u1)

T(v2 � u2)+ (v2 + u2)
T(v1 � u1)

= 2(vT1 v2 � uT1 u2)

= 2(uT1R
T(�q)R(�q)u2 � uT1 u2)

= 0

and thus q4 = q40 . Hence, under Case 1, we obtain the qua-

ternion solution

�q =
q

q4

� �
= g

(v1 � u1)× (v2 � u2)
(v1 + u1)

T(v2 � u2)

� �
ð19Þ

where g is the normalization constant that ensures unit

length.

C.1.2 Case 2. (v1 � u1)× (v2 � u2)= 0

This condition means that 9a 6¼ 0, such that

v1 � u1 = a(v2 � u2)

, R(�q)u1 � u1 = a(R(�q)u2 � u2)

, R(�q)(u1 � au2)= u1 � au2

ð20Þ

, R(�q)T(v1 � av2)= v1 � av2 ð21Þ

From equation (20), we conclude that u1 � au2 is an

eigenvector corresponding to the eigenvalue 1 of the rota-

tional matrix R(�q), and is thus colinear with the unit vector

of rotation k and the corresponding quaternion vector q. As

a consequence, u1, u2, and q are coplanar. Analogously,

from equation (21), we conclude that v1, v2, and q are

coplanar.

C.1.3 Case 2(a). vT1 (u1 × u2) 6¼ 0:

Under this configuration (see Figure 15), the plane Pu

(formed by u1, u2) intersects the plane Pv (formed by

v1, v2) at a unique line, with the same direction as the

vector

q= h(v1 × v2)× (u1 × u2), h 6¼ 0 ð22Þ

Substituting q from equation (22) into equation (14) for

i = 1 yields

(v1 � u1)q4 = h v1 + u1 ×?v1 × v2 ×b c(u1 × u2)
= h((v1 + u1)

T(u1 × u2)(v1 × v2)
�(v1 + u1)

T(v1 × v2)(u1 × u2))
ð23Þ

= h(vT1 u1 ×b cu2(v1 × v2)
�uT1 v1 ×b cv2(u1 × u2))

ð24Þ

where equation (23) is obtained using the identity

a × cbb ×b cc= (aTc)b� (aTb)c, while equation (24)

results from the property of the cross-product

aT(a× b)= 0. Next, we note that from Case 2

(v1 � u1)× (v2 � u2)= 0

) vT1 v1 � u1 ×b c(v2 � u2)= 0

) �vT1 u1 ×b c(v2 � u2)= 0

) vT1 u1 ×b cu2 = � uT1 v1 ×b cv2

ð25Þ

Employing equation (25), equation (24) can be written

as

(14)

(15)
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(v1 � u1)q4

= h vT1 u1 ×b cu2 (v1 × v2)+ (u1 × u2)ð Þ ð26Þ

Projecting both sides of equation (26) on (v1 × v2)
yields

(v1 × v2)
T(v1 � u1)q4

= h vT1 u1 ×b cu2 (v1 × v2)k k2 + (v1 × v2)
T(u1 × u2)

	 

ð27Þ

) �u1
T v1 ×b cv2

� �
q4

= h vT1 u1 ×b cu2 (v1 × v2)k k2 + (v1 × v2)
T(u1 × u2)

	 

ð28Þ

) q4 = h (v1 × v2)
T v1 × v2 + u1 × u2ð Þ ð29Þ

where to arrive at equation (29), we again employ equation

(25).

Summarizing equations (22) and (29), the solution for

Case 2(a) is

�q = h
(v1 × v2)× (u1 × u2)

(v1 × v2)
T(v1 × v2 + u1 × u2)

� �
ð30Þ

where h is the normalization constant that ensures unit

length.

C.1.4 Case 2(b). vT1 (u1 × u2)= 0

This condition means that u1, u2, v1, v2, and q are all copla-

nar (see Figure 16). We assume that q 6¼ 0, otherwise �q is

the unit quaternion. In such a case, we first show that

q4 = 0. Specifically, we use Rodrigues’ formula for expres-

sing the rotation matrix in terms of the quaternion (Trawny

and Roumeliotis, 2005) and expand equation (13), as

vi =R(�q)ui

= (2q2
4 � 1)I� 2q4 q ×b c+ 2qqT

� �
ui

= (2q2
4 � 1)ui + 2(qTui)q� 2q4(q× ui)

ð31Þ

Note that (q× ui) is perpendicular to all other vectors

appearing in equation (31). Thus, projecting both sides of

equation (31) on (q× ui) yields q4 = 0. Substituting q4

back into equation (31) results in

ui + vi = 2(qTui)q, i = 1, 2 ð32Þ

If u1 + v1 = u2 + v2 = 0, we employ the assumption q 6¼ 0;

equation (32) leads to

qTui = 0, i = 1, 2 ð33Þ

Note that since u1, u2, and q are coplanar, equation (33)

infers that u1 and u2 are colinear. This contradicts the linear

independent assumption of u1 and u2.

Now, we consider the case where ui + vi 6¼ 0 and

uj + vj = 0, where i 6¼ j and i, j 2 f1, 2g. From equation

(34), we have

q= r(ui + vi) r 6¼ 0

) q= 1
ui + vik k (ui + vi)

ð34Þ

Note that this choice of q in equation (34) also satisfies

qTuj = 0, or equivalently

(ui + vi)
Tuj = uTi uj + vTi uj

= uTi R
T(�q)R(�q)uj + vTi uj

= vTi vj � vTi vj = 0

ð35Þ

where equation (35) is obtained by noting that uj = � vj.

Thus, with ui + vi 6¼ 0, we have

�q =
1

ui + vik k
ui + vi

0

� �
ð36Þ

Finally, when ui + vi 6¼ 0 and uj + vj 6¼ 0, equation (32)

shows that

(ui + vi)× (uj + vj)= 0

or, equivalently, q, ui + vi, and uj + vj are all colinear.

Therefore, regardless of the choice of i, j, they yield the

same solution

�q =
1

ui + vik k
ui + vi

0

� �
=

1

uj + vj

  uj + vj

0

� �
ð37Þ

C.2 Motion estimation from two views

In this section, we describe an efficient Gauss–Newton

method to determine the five dof transformation between

two views, given the bearing measurements to common

features.

C.2.1 Problem formulation. Consider n features common

to the images I1, I2, where each feature fi’s 3D position is

expressed with respect to frames fI1g and fI2g as I1pfi
and

I2pfi
, respectively. The measurement model in frame fIjg

(j = 1, 2) is the 2D projection of each feature fi
(i = 1, . . . , n) with additive zero-mean Gaussian noise

jzi =P(Ijpfi
)+ jni ð38Þ

where

P x y z½ �T
	 


= x
z

y

z

� �T
and jni;N (0,s2I). Next, we remove the unobservable

scale (in this case the distance I2 dI1
between the two

images) by employing the following geometric constraint

I2pfi
=R(�q)I1pfi

+ I2pI1

=R(�q)I1pfi
+ I2 dI1

t

) 1
I2 dI1

I2
pfi

=R(�q) 1
I2 dI1

I1
pfi

	 

+ t

)I2fi =R(�q)I1 fi + t

ð39Þ
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where �q and t are the quaternion of rotation and unit vector

of translational direction, respectively, from fI1g to fI2g,
while we have defined

I2 fi ¼D
1

I2 dI1

I2pfi
, and I1 fi ¼D

1
I2 dI1

I1pfi

Equation (39) describes the five dof constraint between fea-

ture i’s scaled 3D positions in two views.

Next, we seek to find the optimal solution,

y= �qT I2pTI1

I1pTf1 � � �
I1pTfn

� �T
, which minimizes the total

reprojection error

C(y)=
Pn
i = 1

1zi �P(I1pfi
)

 2
+ 2zi �P(I2pfi

)
 2

	 

=
Pn
i = 1

( 1zi �P(I1pfi
)

 2

+ 2zi �P(R(�q)I1pfi
+ I2 dI1

t)
 2

)

=
Pn
i = 1

( 1zi �P( 1
I2 dI1

I1
pfi
)

 2

+ 2zi �P R(�q)( 1
I2 dI1

I1
pfi
)+ t

	 
 2

)

ð40Þ

=
Pn
i = 1

( 1zi �P(I1 fi)
 2

+ 2zi �P R(�q)I1 fi + t
� � 2

)

ð41Þ

where equation (40) is obtained by noting that the perspec-

tive projection is scale-invariant (i.e., P(lx)=P(x),
8l 6¼ 0), and equation (41) results from the definition of
I1 fi and equation (39).

Denoting x= �qT tT I1 fT1 � � �I1 fTn

� �T
, we have

y	= argmin C(y), subject to �qk k= 1

, x	= argmin C(x), subject to �qk k= 1, tk k= 1

ð42Þ

To solve the non-linear least-square problem (equation

(42)), we employ iterative Gauss–Newton minimization at

every iteration k, x(k + 1) = x(k) 
 dx(k), where the update

operation 
 is defined in Appendix C.2.2.

C.2.2 Solution.. In what follows, we first describe the per-

turbation model x= x̂
 dx that we use, where x is the true

state vector, x̂= ½ �̂qT t̂
T

I1 f̂
T

1 � � �I1 f̂
T

n
�T is the estimate,

and dx is the state perturbation corresponding to the esti-

mate x̂ and their perturbation models. Recalling that the

state vector comprises three main elements (orientation

expressed as a unit quaternion, unit vector of translation,

and scaled feature positions with respect to fI1g), we define

the perturbation model for each state quantity as follows.

Unit-quaternion perturbation.

�q = d�q� �̂q ð43Þ

) R(�q) ’ (I� du ×b c)R(�̂q) ð44Þ

with

d�q = 1 +
duk k2

4

 !�1
2

1
2

duT 1
� �T

where du is the small-angle axis perturbation (i.e.,

duk k ’ 0), where the last equation is obtained using the

small-angle approximation (see Trawny and Roumeliotis,

2005, for details).

Unit vector of translation perturbation.

t=R(̂t
?
,a)R(̂t

??
,b)̂t ð45Þ

where ½ t̂ t̂
?

t̂
?? � forms a rotation matrix, and a,b are

small perturbation angles. Using the small-angle approxi-

mation, in equation (45) we obtain

t ’ (I� ab̂t?× c)(I� bb̂t??× c)̂t

’ (I� ab̂t?× c � bb̂t??× c)̂t
ð46Þ

Fig. 15. Geometric interpretation of Case 2(a). The plane Pu,

comprising vectors u1, u2, intersects the plane Pv, comprising

vectors v1, v2, at a line with direction q.

Fig. 16. Geometric interpretation of case Case 2(b). The planes

Pu and Pv coincide, thus the five vectors u1, u2, v1, v2, and q are

coplanar.
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’ t̂+ at̂
?? � bt̂

? ð47Þ

where in equation (46) we dropped the second-order term

abb̂t?×?t̂
??
× c, while equation (47) is obtained by using the

right-hand rule for the cross-product of t̂, t̂
?

, and t̂
??

.

Feature position perturbation.

I1 fi =
I1 f̂i + dfi ð48Þ

which is simply an additive model (no constraint is imposed

on this element of the state vector).

Measurement function. Based on the perturbation models

in equations (44), (47), and (48), we define the following

perturbation state vector

dx= drT dfT1 � � � dfTn
� �T

= duT a b dfT1 � � � dfTn
� �T

ð49Þ

Next, we linearize the measurement of feature i in the

first image I1, using a Taylor series expansion around the

estimate x̂
(k)

at iteration k to obtain

1zi =P(I1fi)+
1ni

’ P(I1 f̂
(k)

i )+ ∂P
∂I1 fi

I1 f̂
(k)

i

	 
	 

df

(k)
i + 1ni

’ P(I1 f̂
(k)

i )+H
(k)
1i df

(k)
i + 1ni

ð50Þ

where

H
(k)
1i =

∂P
∂I1fi

x y z½ �T
	 


=
1
z

0 �x
z2

0 1
z

�y

z2

� �

Subsequently, from the geometric constraint (equation

(39)), and the perturbation models (equations (44), (47),

and (48)), we find the perturbation for the feature’s position

in fI2g, denoted dI2 fi, as

I2 fi =R(�q)I1 fi + t

)I2fi ’ (I� du ×b c)R(�̂q)(I1 f̂i + dfi)

+ t̂+ at̂
?? � bt̂

?

)I2fi � R(�̂q)
I1
f̂i � t̂ ’ � du ×b cR(�̂q)I1

f̂i +R(�̂q)dfi

+ at̂
?? � bt̂

?

) dI2fi ’ R(�̂q)dfi

+ R(�̂q)
I1
f̂i ×

j k
t̂
?? �t̂?

h i
dr

ð51Þ

where to reach equation (51), we have defined

dI2 fi =
I2 fi�I2 f̂i =

I2 fi � (R(�̂q)I1 f̂i + t̂)

Based on equations (50) and (51), we linearize the mea-

surement of feature i in the second image I2 as

2zi ’ P(I2 f̂
(k)

i )+H
(k)
2i dI2 f

(k)
i + 2ni

’ P(I2 f̂
(k)

i )+H
(k)
2i R(�̂q

(k)
)df(k)i

+H
(k)
2i R(�̂q

(k)
)
I1

f̂
(k)

i ×
j k

t̂
(k)?? �t̂(k)

?
� �

dr(k)

+ 2ni

’ P(I2 f̂
(k)

i )+ J
(k)
fi df

(k)
i + J

(k)
ri dr(k) + 2ni

ð52Þ

where in equation (52) we have defined

H
(k)
2i = ∂P

∂I1 fi

I1 f̂
(k)

i

	 

J
(k)
fi =H

(k)
2i R �̂q

(k)
	 


J
(k)
ri =H

(k)
2i R(�̂q

(k)
)
I1

f̂
(k)

i ×
j k

t̂
(k)?? �t̂(k)

?
� �

Employing the linearizations of equations (50) and (52),

we transform the non-linear least-square problem (equation

(42)) into a linear least-square problem. Specifically, at

each iteration k, we seek to find the dx(k) that minimizes

the following least-square cost function

C
0(dx(k))=

Pn
i = 1

( 1zi �P I1 f̂
(k)

i

	 

�H

(k)
1i df

(k)
i

 2

+ 2zi �P I2 f̂
(k)

i

	 

� J

(k)
fi df

(k)
i � J

(k)
pi dr(k)

 2

)

=
Pn
i = 1

(
d1zi

d2zi

� �
� H

(k)
1i 0

J
(k)
fi J

(k)
ri

" #
df

(k)
i

dr(k)

� �


2

)

ð53Þ

where djzi =
jzi �P(Ij f̂

(k)

i ).
Computing dx(k) = argmin C

0(dx(k)) is equivalent to

finding the least-square solution of the following overdeter-

mined (n.5) linear system of equations

d1z1

d2z1

d1z2

d2z2

..

.

d1zn

d2zn

2
6666666664

3
7777777775

=

H
(k)
11 0 � � � � � � 0 0

J
(k)
f 1 0 � � � � � � 0 J

(k)
r1

0 H
(k)
12 0 � � � 0 0

0 J
(k)
f 2 0 � � � 0 J

(k)
r2

..

. ..
. . .

. . .
. ..

. ..
.

0 � � � � � � � � � H
(k)
1n 0

0 � � � � � � � � � J
(k)
fn J(k)rn

2
66666666666664

3
77777777777775

df
(k)
1

df
(k)
2

..

.

df(k)n

dr(k)

2
666664

3
777775

ð54Þ

To solve equation (54) efficiently, we take advantage of its

sparse structure, as described in the following steps.

Step 1: Solve for dr(k). We will first eliminate all the terms

df
(k)
i , i = 1, . . . , n. To do so, we define the following matrix
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U=

uT1
(k)

0 � � � � � � 0 0

0 uT2
(k)

0 � � � 0 0

..

. ..
. . .

. . .
. ..

. ..
.

0 � � � � � � � � � 0 uTn
(k)

2
66664

3
77775 ð55Þ

in which each 1× 4 block element is defined as

u
(k)
i =

u
(k)
i(1:2)

u
(k)
i(3:4)

" #
=

ziJ
T(k)
fi(1:2, 1:2)

J
(k)
fi(2, :)

I1

f̂i

�J(k)fi(1, :)

I1

f̂i

2
4

3
5

�J(k)fi(2, :)

I1

f̂i

J
(k)
fi(1, :)

I1

f̂i

2
6666664

3
7777775

ð56Þ

Hence, each uTi has the following property

uTi
(k) H

(k)
1i

J
(k)
fi

" #
= 0T

,

1
zi

0

0 1
zi

JTfi
(k)

�xi

z2
i

�yi

z2
i

2
64

3
75 u

(k)
i(1:2)

u
(k)
i(3:4)

" #
= 0

ð57Þ

where I1 f̂
(k)

i = xi yi zi½ �T. Multiplying both sides of

equation (54) with U yields

u
T(k)
1(1:2)d

1z1 � u
T(k)
1(3:4)d

2z1

u
T(k)
2(1:2)d

1z2 � u
T(k)
2(3:4)d

2z2

..

.

u
T(k)
n(1:2)d

1zn � u
T(k)
n(3:4)d

2zn

2
66664

3
77775=

u
T(k)
1(3:4)J

(k)
r1

u
T(k)
2(3:4)J

(k)
r2

..

.

u
T(k)
n(3:4)J

(k)
rn

2
6666664

3
7777775

dr(k) ð58Þ

Note that through this analytical process (U is computed in

closed form), we reduced the dimension of the problem we

need to solve from 4n× (3n + 5) for equation (54) to n× 5

for equation (58), which is very efficient to solve for dr(k).

Step 2: Solve for each df
(k)
i .T. Given dr(k), we can separately

solve for each df
(k)
i by employing the following 4× 3 sys-

tem of equations resulting from the two block rows of equa-

tion (54) corresponding to each feature i

d1zi

d2zi � J
(k)
fi dr(k)

� �
=

H
(k)
1i

J
(k)
fi

" #
df

(k)
i ð59Þ

Again, we can easily take advantage of the structure of

equation (59) and instead employ Givens rotations (Golub

and Van-Loan, 2012) to transform it to an upper triangular

system of size 3× 3 and solve it efficiently.

After obtaining dx(k), we employ equations (43), (45),

and (48) to update x̂
(k + 1)

= x̂
(k) 
 dx(k) while ensuring

unity of the quaternion and the translational vector; then

we repeat this process until convergence.
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