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Abstract. In this paper, we present a novel resource-allocation problem
formulation for vision-aided inertial navigation systems (VINS) for effi-
ciently localizing micro aerial vehicles equipped with two cameras point-
ing at different directions. Specifically, based on the quadrotor’s cur-
rent speed and median distances to the features, the proposed algorithm
efficiently distributes processing resources between the two cameras
by maximizing the expected information gain from their observations.
Experiments confirm that our resource-allocation scheme outperforms
alternative naive approaches in achieving significantly higher VINS posi-
tioning accuracy when tested onboard quadrotors with severely limited
processing resources.

1 Introduction and Related Work

In order for micro aerial vehicles (MAVs) to autonomously navigate within GPS-
denied areas (e.g., indoors), they need to reliably and efficiently estimate their
3D position and orientation (pose) based on onboard measurements from small-
size, lightweight sensors such as cameras and inertial measurement units (IMUs).
Previous work on vision-aided inertial navigation systems (VINS) for quadro-
tors has primarily considered either forward or downward-pointing cameras in
conjunction with an IMU. In [10], for example, a single forward-facing camera
is employed for performing visual-inertial odometry, while in [15] a stereo pair
mounted in front of the quadrotor is used for localizing. On the other hand, [5,16]
focus on efficiently fusing point-feature observations from a downward-pointing
camera with inertial measurements, while [6] combines optical flow with IMU
data for estimating the vehicle’s linear and rotational velocity.

Many quadrotors, however, (e.g., Parrot’s Bebop) are equipped with multiple
cameras pointing at different directions (see Fig. 1). In such cases, the down-
ward camera is typically used for optical-flow estimation and position stabi-
lization, while the forward one is often employed for pose determination and
navigation (e.g., [3]). As shown in [12], combining visual observations from
two or more cameras spanning different viewing directions can lead to signif-
icant motion-information gains. Such systems, comprising two stereo pairs, have
been employed for determining a quadrotor’s pose using all feature observations
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jointly [7], or separately [14] for first estimating each stereo-pair’s pose and then
combining their estimates for computing the vehicle’s pose. A quadrotor local-
ization system that employs two monocular, differently-pointing cameras is that
of [4]. In particular, the optical flow from the downward camera along with the
altimeter data are used for estimating the horizontal velocity and resolving the
scene’s scale. This information is then combined with the attitude estimates from
the IMU and image data from the front camera to perform (on a remote laptop)
PTAM-based localization [8] along short paths (∼16 m).

Fig. 1. The Bebop cameras’ fov.

Besides the lack of a VINS that directly
combines observations from two cameras
with different viewing directions for esti-
mating the pose of a MAV, very little is
known about how to optimize the infor-
mation gain from each camera. In particu-
lar, most prior work on feature selection for
improving localization accuracy has consid-
ered one or two cameras pointing in the same
direction (e.g., [2,9,18]). Moreover, existing
approaches, although they solve a relaxed
version of the computationally-intractable
optimal problem, their processing require-
ments often exceed the computational resources of small-size quadrotors.

To address these limitations, the main contributions of this work are as fol-
lows:
– We introduce a novel resource-allocation problem formulation, which considers

the vehicle’s current speed and median distance to the features detected by
each camera, as well as approximate models of the impact that each of these
parameters has on the expected information gain, so as to efficiently distribute
processing resources between the two cameras’ observations.

– We extend the square-root inverse sliding window filter (SR-ISWF) of [17] to
process visual observations from both cameras of the Bebop quadrotor.1

– We experimentally validate our proposed, highly efficient, resource-allocation
scheme and demonstrate that it allows the VINS algorithm to achieve superior
positioning accuracy as compared to alternative approaches (using only one
of the two cameras, or processing the same number of features from both of
them), while operating in real-time and well within (∼50% of the CPU time)
the severely limited computational resources of the Bebop quadrotor.

2 Technical Approach

Assume that a quadrotor is equipped with two cameras, namely a forward-facing
camera, {Cf}, and a downward-pointing camera, {Cd}.2 Features are extracted
1 Although the two cameras’ fov have a small overlap, we do not match features

between them as the different camera characteristics make such process unreliable.
2 Note that although the ensuing presentation focuses on the specific (forward and

downward) configuration of the cameras onboard the Bebop quadrotor used in our
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and tracked across image sequences for each camera independently. Selecting the
most informative features for localization (i.e., so as to minimize the posterior
covariance of the quadrotor’s pose estimates), would require solving the following
optimization problem:

min
ui,vj∈{0,1}

tr
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where P� denotes the prior covariance of the quadrotor’s pose estimates, Hi

is the feature i’s measurement Jacobian with respect to the pose state, σf and
σd are the measurement noise standard deviations, Sf and Sd are the sets of
features observed by Cf and Cd, respectively, and γ is the maximum number of
features that can be processed at each time step.

Since (1) is an integer programming problem with NP complexity, prior
approaches (e.g., [1]) relax it by ignoring P� and allowing ui, vj ∈ [0 1] so
that it becomes convex and can be cast as a semidefinite program (SDP). Its
cost, however, remains prohibitively high O((|Sf |+ |Sd|)3). Although alternative
approximate formulations achieve lower complexity (O((|Sf |+ |Sd|)2) for [2] and
O(γ(|Sf | + |Sd|)) for [18]), their processing requirements are still quite high for
the Bebop’s limited resources.

For this reason, in this work we introduce further approximations to (1) so
as to derive a constant-cost solution. Specifically, in order to avoid explicitly
evaluating each feature’s measurement Jacobian, we focus on the expected value
of the original cost function in (1), over a particular distribution (to be specified
later on) of the positions of the features viewed by each camera:
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Furthermore, by employing Jensen’s inequality and the fact that the function
tr(X−1) is convex [1], it is straightforward to show that C(λ) in (2) has the
following lower bound:

Clb(λ) = tr

(
E

[
λ

1
σ2

f

HT
i Hi + (1 − λ)

1
σ2

d

HT
j Hj

])−1

= tr

(
λE

[
1
σ2

f

HT
i Hi

]
+ (1 − λ)E

[
1
σ2

d

HT
j Hj

])−1

(3)

experiments, our approach is applicable to any dual-camera system with arbitrary
geometric configuration.
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By defining the expected information gain of a feature measurement, from the
forward or downward-pointing camera, with respect to the pose state as:

Îf = E

[
1
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]
, Îd = E

[
1
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d

HT
j Hj

]
(4)

and substituting into the relaxed cost function Clb(λ) in (3), our proposed opti-
mization problem can be written as:

min
λ∈[0 1]

tr
(
λÎf + (1 − λ)Îd

)−1

(5)

which represents a resource-allocation problem between the two cameras. Note
that, once the optimal percentage of resources is allocated to each camera (i.e.,
the optimal value λ∗ is obtained), we then select features within each camera by
employing the approach of [9]; i.e., we enforce uniform feature extraction during
image processing and select the ones with the longest tracks.

As compared to (1), the relaxed optimization problem in (5) has only one
scalar variable λ. Furthermore, since the matrices Îf and Îd have a fixed size and
can be efficiently computed, (5) can be solved in constant time that only depends
on the matrices’ size, regardless of the number of features available from each
camera. Thus, and in order to reduce complexity, we first assume that the fea-
tures’ positions can be accurately triangulated from their first two observations,
and then used for localizing the rest of the camera poses in the estimator’s opti-
mization window [17]. Moreover, we ignore the cameras’ orientation, i.e., their
(i) roll and pitch, as they are observable and can be precisely estimated [typi-
cally, with root mean square error (RMSE) of 0.1◦], and (ii) yaw, as its impact
over a short time horizon (i.e., the 1 s corresponding to the remaining 4 poses in
the estimator’s sliding window) is very small for any error, due to the gyro noise,
to become significant. As a result of these relaxations, the measurement Jaco-
bian Hi is now determined with respect to only the downward-camera’s position
state,3 and hence the size of the information matrices Îf and Îd becomes 3-
by-3. Based on these approximations, in what follows, we present a closed-form
expression for evaluating these two matrices.

In order to compute the expected information gain from each feature mea-
surement, as defined in (4), we introduce certain simplifying assumptions about
the spatial distribution of the features observed by the two cameras. We start by
parameterizing every feature i with respect to the camera s, where s ∈ {f, d} is
the camera index, by its spherical coordinates (the azimuth angle φi, the polar
angle θi, and the distance ρi). Assuming that all features are (i) located on a
spherical cap of radius equal to the median distance, ρs, of the features currently
observed, and (ii) uniformly distributed over the angles φi and θi, i.e.,

ρi = ρs, φi ∼ U[0, 2π], θi ∼ U[0, θMs] (6)

3 Without loss of generality, we choose the quadrotor’s frame of reference to be the
one of the downward camera.
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where θMs equals half of the field of view (fov) of the camera s, it can be shown
(see Appendix A) that the expected information gain becomes:
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where k′ and k denote the time steps when a feature measurement is considered

and when it is first observed, respectively, C
k′
d

Ck
d

R represents the rotation matrix
between the downward-camera frames corresponding to these two time steps,
and Cf

Cd
R is the extrinsic-calibration rotation matrix between the forward and

downward cameras. By substituting (7) into (5), the cost function becomes:

Clb(λ) = tr
(

λ
C

k′
d

Ck
d

RT Cf
Cd

RTDf
Cf
Cd

R C
k′
d

Ck
d

R + (1 − λ)C
k′
d

Ck
d

RTDd
C

k′
d

Ck
d

R
)−1

= tr
(
λ

Cf
Cd

RTDf
Cf
Cd

R + (1 − λ)Dd

)−1
=

f(λ)
g(λ)

(9)

where f(λ) and g(λ) are quadratic and cubic polynomial functions, respectively,
of λ ∈ [0 1]. To minimize (9), we first compute all the stationary points of the
unconstrained optimization problem, which requires solving the quartic equa-
tion f ′(λ)g(λ) − g′(λ)f(λ) = 0. Then, the optimal solution λ∗ is the one that
yields the minimal cost value Clb(λ∗) among all feasible (λ∗ ∈ [0 1]) stationary
points, computed in closed form, together with the boundary values 0 and 1.
Figure 2 (left) illustrates the optimal values of λ∗ for different median feature
distances ρs. As evident, three regions emerge: (I) for ρf/ρd ≥ 2 and (III) for
ρf/ρd ≤ 1.15 where all processing is allocated to the downward or forward cam-
era, respectively, while in region (II) features from both cameras are processed.

At this point, we should note that the preceding formulation does not consider
the impact of the quadrotor’s motion on the expected information gain. In par-
ticular, due to the limited fov and close distance to the ground, the track length
of the downward-camera’s features is quite limited as compared to the front
one’s. Moreover, reliably tracking features from the downward camera becomes
exceedingly difficult as the quadrotor’s speed increases [see Fig. 2 (right)]. To
account for the track length’s impact, we modify the cost function in (9) as:

C
′
lb(λ) = tr

(
λψf

Cf
Cd

RTDf
Cf
Cd

R + (1 − λ)ψdDd

)−1
(10)

where ψf and ψd are the expected feature-track lengths (minus 2, since the
first two observations are used for triangulating the feature and do not provide
information for localizing the cameras) expressed as functions of the quadrotor’s
speed based on prior data [see Fig. 2 (right)]. This modification is motivated
by the fact that, in general, the longer a feature track is, the more information
it will provide to the sliding-window estimator for determining the camera’s
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Fig. 2. (left) Optimal resource allocation λ∗ for ρf ∈ [0.2 5] m and ρd ∈ [1 3] m.
(right) Average feature track lengths for each camera at different speeds. The blue-
solid and red-dashed lines are the fitted linear and quadratic functions ψf and ψd,
respectively.

position. Besides this consideration, and due to the fact that the downward-
camera’s feature tracking becomes unreliable for speeds higher than 2 m/s, we
only consider features from the forward camera during such fast motions.

Lastly, once the number of features that will be processed from each camera
is determined, i.e., λ∗γ and (1 − λ∗)γ for the forward and downward camera,
respectively, we employ the method of [9] for selecting the most informative ones
within each camera.4

3 Experimental Results

To examine the impact of the proposed resource-allocation algorithm on the
localization accuracy of VINS, we compared our approach against three naive
allocation schemes using as testing platform a MAV. Specifically, the Bebop
quadrotor carries an IMU, a 180◦ fov forward camera with resolution downsam-
pled to 300 × 264, a 53◦ fov downward camera with resolution downsampled
to 320 × 240, and a 800 MHz ARM-based dual-core processor. Approximately
200 FAST corners [13] are extracted from the images, and tracked using the
Kanade-Lucas-Tomasi (KLT) algorithm [11] across time at a frequency of 15 Hz.
The SR-ISWF estimator [17] maintains a sliding window of 6 poses, selected at
5 Hz.

For testing our method, we collected two building-scale datasets (path length
∼200 m each) while manually flying the quadrotor at fast speeds (up to 6 m/s)
through open spaces, with features far away from the forward camera, as well as
during slow motions, including rotations in place, while navigating through nar-
row passages with nearby scenes. Since the Bebop’s processing resources are quite

4 Through experimentation, [9] has been shown to offer a very efficient and accurate
metric for assessing the expected information gain from each feature.
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limited, we allowed the SR-ISWF to process up to 20 features and compared the
achieved localization accuracy against the batch least-squares (BLS) estimates
(computed offline) for the following configurations: (i) f-only : 20 MSCKF fea-
tures are used from only the forward camera;5 (ii) f-SLAM : 10 MSCKF and
10 SLAM features are used from the forward camera; (iii) fd-EF : resources are
equally distributed between the two cameras by fixing the number of MSCKF
features processed by each of them to 10 (20 total); and (iv) the proposed fd-D
where 20 MSCKF features are dynamically selected from the two cameras.

The resource-allocation results of the proposed approach are depicted in
Fig. 3, where the optimal λ∗ that minimizes the cost function in (10) is plotted,
along with the speed of the quadrotor, against time. As evident, our resource-
allocation scheme is able to properly adjust to the different motions and scene
distances. Specifically, when the quadrotor is flying fast (e.g., during time steps
210–260), only the forward camera is used (λ = 1) since no features can be reli-
ably tracked across the downward-camera’s images. On the other hand, when
the quadrotor navigates through narrow passages with nearby scenes (e.g., many
times between time steps 400 and 750), observations from both cameras are used
(0 < λ < 1). Lastly, when the quadrotor rotates in place and the scene observed
by the forward camera is distant (e.g., many times between time steps 350 and
600), only the downward camera is used (λ = 0) to maximize the positioning
accuracy.

0 100 200 300 400 500 600 700 800
0

25
50
75

100O
pt

im
al

λ 
(%

)

Time Step

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5

Sp
ee

d 
(m

/s
)

λ
Speed

Fig. 3. The percentage of resources allocated to the forward camera (i.e., optimal value
of λ, shown as black dots) plotted along with the speed of the quadrotor (solid blue
line) against time steps, each of duration 0.2 s.

5 MSCKF features are marginalized by the SR-ISWF for performing visual-inertial
odometry without including their estimates in the filter’s state; see [17] for details.
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Fig. 4. Estimated trajectories for three of the four resource-allocation schemes consid-
ered against the BLS groundtruth overlaid on the building’s blueprint.

Table 1. VINS RMSE for the 4 resource-allocation schemes considered.

RMSE (m) f-only f-SLAM fd-EF fd-D

Dataset 1 2.96 2.38 2.67 1.22

Dataset 2 2.72 2.70 2.87 2.11

In order to assess the impact on the VINS localization accuracy, the root
mean square error (RMSE) of the estimated 3D position for each of the four
resource-allocation schemes considered is shown in Table 1, while the estimated
trajectories for three of them, as well as the BLS groundtruth, overlaid on the
building’s blueprint are depicted in Fig. 4. As evident from Table 1, by adjust-
ing the allocation of processing resources based on the vehicle’s speed and the
median distance to each camera’s corresponding scene, significant gains in accu-
racy (0.59–1.16 m lower RMSE) are realized as compared to when using only
one of the two cameras, or processing the same number of features from each of
them.6 This key finding is also visually confirmed by the trajectories shown in
Fig. 4 where the one estimated by the SR-ISWF when employing the proposed
dynamic resource-allocation scheme best aligns with the BLS groundtruth.

Lastly, we note that the dual-camera SR-ISWF runs onboard the Bebop
quadrotor and takes less than 100 ms per estimate. Specifically, 6 ms for FAST
feature extraction, 36 ms for KLT tracking, 2 ms for RANSAC, and 50 ms
for a SR-ISWF update. Since the filter runs at 5 Hz, the overall processing
takes ∼500 ms of every second. The remaining processing is reserved for future
autonomous navigation tasks such as obstacle detection/avoidance, path plan-
ning, and exploration. Videos of the presented experiments can be found at
http://mars.cs.umn.edu/research/dual camera quadrotor.php.

6 We do not evaluate the RMSE for the case of only downward-pointing camera
since the quadrotor’s CPU cannot perform image processing at the high frame rates
(40 Hz) required for tracking features at high speeds (6 m/s).

http://mars.cs.umn.edu/research/dual_camera_quadrotor.php
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4 Conclusions

In this paper, we considered the problem of visual-information selection for
efficiently localizing a dual-camera MAV. In particular, instead of addressing
the computationally-intractable problem of selecting the most informative fea-
ture measurements, we focused on optimally distributing processing resources
between the two cameras. To this end, we introduced a novel problem formulation
that seeks to maximize the expected information gain based on each camera’s
characteristics (fov and noise standard deviation), their geometric configuration,
the median features’ distance, and the vehicle’s speed. Moreover, by employing
simplifying assumptions about the spatial distribution of the features viewed
by each camera, we showed that the optimal solution to the resource-allocation
problem can be found in constant time, by solving, in closed form, the quar-
tic equation resulting from the optimality conditions. Our approach was tested
experimentally using a small-size quadrotor flying indoors over a wide range
of motions and scene distances. In all cases considered, the proposed resource-
allocation scheme allowed the VINS algorithm to operate in real time while
achieving positioning accuracy superior to that of naive approaches that employ
only one of the two cameras, or equally distribute the quadrotor’s processing
resources among them.

Appendix A

In order to compute the expected information matrices in (7), we start by deriv-
ing the measurement Jacobian Hi, appearing in (4), at time step k′. Consider a
feature i, observed by the camera s, s ∈ {f, d}, whose position, pi, with respect
to the camera frame {Ck′

s }, is:
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ture i:

z = π
(

C
k′
s pi

)
+ ni =

[xi

zi
yi

zi

]
+ ni,

C
k′
s pi = C

k′
s

Ck
s
R(C

k
spi − C

k
sp

Ck′
s

) (12)

where ni is the measurement noise and C
k
spi denotes the feature’s position with

respect to the first-observing camera frame, {Ck
s }, at time step k, while C

k′
s

Ck
s
R

and C
k
sp

Ck′
s

represent the rotation matrix and translation vector, respectively,
between the camera frames at the corresponding time steps k and k′. Based
on (12), the measurement Jacobian with respect to the camera’s position is:
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which leads to the following information matrix:
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By employing the assumptions about the features’ distribution in (6), and sub-
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Note that Hi in (13), and hence Îs in (15), is expressed with respect to the posi-
tion state, C

k
sp

Ck′
s

, of the camera s [see (13)]. Therefore, and since we chose the

system’s state to comprise the downward-camera’s position, C
k
dp

Ck′
d

, the expected
information gain from the corresponding feature observations is obtained by
directly setting s = d in (15), i.e.,
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On the other hand, the forward-camera’s measurement Jacobian also depends
on the extrinsics of the two cameras, i.e.,
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results from the geometric relationship between the two cameras across time
steps k and k′. By comparing (17) to (13), the forward-camera’s Jacobian is
obtained by first setting s = f in (13), and then multiplying it, from the right,
with the extrinsic-calibration rotation matrix Cf

Cd
R. Consequently, the expected

information gain from the forward camera becomes:
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Lastly, employing the geometric relationship
C

k′
f

Ck
f

RCf
Cd

R = Cf
Cd

RC
k′
d

Ck
d

R in (18)

results in the expression for Îf shown in (7).
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