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Abstract— In this paper, we present a vision-aided inertial
navigation system (VINS) for localizing wheeled robots. In
particular, we prove that VINS has additional unobservable
directions, such as the scale, when deployed on a ground
vehicle that is constrained to move along straight lines or
circular arcs. To address this limitation, we extend VINS to
incorporate low-frequency wheel-encoder data, and show that
the scale becomes observable. Furthermore, and in order to
improve the localization accuracy, we introduce the manifold-
(m)VINS that exploits the fact that the vehicle moves on an
approximately planar surface. In our experiments, we first show
the performance degradation of VINS due to special motions,
and then demonstrate that by utilizing the additional sources
of information, our system achieves significantly higher posi-
tioning accuracy, while operating in real-time on a commercial-
grade mobile device.

I. INTRODUCTION

Over the past 20 years, extensive research has focused on

simultaneous localization and mapping (SLAM) with mobile

robots navigating over flat terrain [1], [2]. In the absence

of GPS, various exteroceptive sensors (e.g., ultrasonic, laser

scanners, cameras, and, more recently, RGB-D) have been

used in conjunction with 2D wheel odometry to determine,

typically, the 3-degree-of-freedom (dof) position and orienta-

tion (pose) of the robot. In most cases, however, the underly-

ing planar-motion assumption is only approximately satisfied

(e.g., due to the unevenness, or roughness, of the surface, the

presence of ramps, bumps, and low-height obstacles on the

floor), thus significantly increasing the unmodeled part of the

robot’s odometry error and leading to low-accuracy estimates

or, in the absence of external corrections, even divergence.

On the other hand, vision-aided inertial navigation sys-

tems (VINS), where visual observations from a camera

are combined with data from an inertial measurement unit

(IMU) to estimate the 6-dof pose of a platform navigating in

3D, have been shown to achieve high-accuracy localization

results (e.g., [3], [4]), even on low-cost mobile devices

(e.g., [5], [6]). Therefore, one would expect that it would

be straightforward to deploy a VINS for localizing robots

moving in 2D. Surprisingly, however, this is not the case.

And one of the main reasons is that the restricted motion

(approximately planar and, for the most part, along arcs or

straight lines at constant speed or acceleration) that ground

robots often undergo when navigating, e.g., indoors, alters
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the observability properties of VINS and renders certain,

additional, dof unobservable.

Specifically, as proven in [7], [8], a VINS has 4 unob-

servable dof corresponding to 3 dof of global translation and

1 dof of rotation around the gravity vector (yaw). This result,

however, holds only when the IMU-camera pair undergoes

generic 3D motion. In contrast, and as shown in this paper,

additional dof, such as the scale, become unobservable when

the robot is restricted to move with constant acceleration.1

In particular, under the simplifying assumption of perfectly-

known gyroscope biases, [9] showed that the VINS’s initial

state cannot be uniquely determined for certain motions, but

without specifying which are the additional unobservable

directions. In this work, we consider the most general case of

unknown gyroscope biases and determine these unobservable

directions analytically.2

Furthermore, motivated by the key findings of our observ-

ability analysis, in this paper we focus on improving the

localization accuracy of VINS when deployed on wheeled

robots. Firstly, in order to ensure that information about the

scale is always available (e.g., even for the periods of time

when the robot moves with almost constant acceleration), we

extend the VINS algorithm to incorporate wheel-odometry

measurements. Since these are often noisy and of frequency

significantly lower than that of the IMU, we process them in

a robust manner, by first integrating the raw encoder data and

then treating them as inferred displacement measurements

between consecutive poses. Additionally, we take advantage

of the fact that the robot moves on an approximately flat

surface and introduce the manifold-(m)VINS, which explic-

itly considers the planar-motion constraint in the estimation

algorithm to reduce the localization error. This is achieved

by analyzing the motion profile of the robot, and its devi-

ation from planar motion (e.g., due to terrain unevenness

or vibration of the IMU-camera’s mounting platform) and

formulating stochastic (i.e., “soft”), instead of deterministic

(i.e., “hard”) constraints, that allow to properly model the

vehicle’s almost-planar motion. In summary, the main novel

contributions of this work are:

• We analytically determine the unobservable dof of VIN-

S under special, restrictive motions.

1Note that although the motion constraints considered are never exactly
satisfied, as explained later on and shown experimentally, motion profiles
close to these significantly reduce the information along the unobservable
directions, and hence degrade the localization accuracy.

2Note that observability is a fundamental property of the VINS model
itself, and does not depend on the specific estimator employed for SLAM.
Thus, the additional unobservable directions of monocular-VINS will nega-
tively impact the accuracy of both batch-least-squares (e.g., [10], [11], [12])
and sliding-window filters/smoothers (e.g., [3], [4], [5], [6], [13]).
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• We extend VINS to process low-frequency odometric

measurements, thus rendering scale always observable.

• We introduce the mVINS which incorporates constraints

about the motion of the vehicle (in this case, approxi-

mately planar) to improve the localization accuracy.

• Through experiments, we validate the key findings of

our theoretical analysis, and demonstrate the increased

accuracy of the proposed VINS-algorithm extensions

when deployed on a tablet onboard a wheeled robot

that navigates within a large-scale building.

II. PRELIMINARIES ON VISION-AIDED INERTIAL

NAVIGATION SYSTEM (VINS)

In this section, we provide a brief review of the monocular-

VINS which serves as the key component of our system. The

VINS estimates the following state vector:

x =
[
IqT

G bT
g

GvT
I bT

a
GpT

I | GfT
1 · · · GfT

N

]T
(1)

where IqG is the unit quaternion that represents the orienta-

tion of the global frame {G} in the IMU frame {I} at time t.
GvI and GpI are the the velocity and position of {I} in {G},
respectively, and the gyroscope and accelerometer biases are

denoted by bg and ba, respectively. Finally, the positions of

point features in {G} are denoted by Gfj , j = 1, ..., N .
The IMU provides measurements of the rotational velocity,

ωm, and the linear acceleration, am, as:

ωm(t) = Iω(t) + bg(t) + ng(t) (2)

am(t) = C(IqG(t))(
Ga(t)− Gg) + ba(t) + na(t)

where the noise terms, ng(t) and na(t) are modelled as

zero-mean, white Gaussian noise processes, while the grav-

itational acceleration, Gg, is considered a known constant.

The IMU’s rotational velocity Iω(t) and linear acceleration
Ga(t), in (2), can be used to derive the continuous-time

system equations:
Iq̇G(t) =

1

2
Ω(ωm(t)− bg(t)− ng(t))

IqG(t)

ḃg(t) = nwg(t)
Gv̇I(t) = C(IqG(t))

T (am(t)− ba(t)− na(t)) +
Gg

ḃa(t) = nwa(t)
GṗI(t) =

GvI(t)
Gḟj(t) = 0, j = 1, . . . , N (3)

where, Ω(ω) �
[−�ω� ω
−ωT 0

]
for ω ∈ R

3, �·� denotes the

skew-symmetric matrix, while the IMU biases are modelled

as random walks driven by white, zero-mean Gaussian noise

processes nwg(t) and nwa(t), respectively.
As the camera-IMU pair moves, the camera provides

measurements of point features extracted from the images.

Each such measurement, zj , is modeled as the perspective

projection of the point feature fj , expressed in the current

IMU frame3 {I}, onto the image plane:

zj =
1

z

[
x
y

]
+ nj ,

⎡
⎣xy
z

⎤
⎦ � Ifj = C(IqG)(

Gfj − GpI) (4)

3For clarity of presentation, we assume that the IMU-camera frames
coincide. In practice, we estimate the IMU-camera extrinsics online.

where the measurement noise, nj , is modeled as zero mean,

white Gaussian. For modeling the IMU propagation [see (3)]

and camera observations [see (4)], including their error

equations and analytical Jacobians, we follow [8].

III. VINS: OBSERVABILITY ANALYSIS UNDER SPECIFIC

MOTION PROFILES

Observability is a fundamental property of a dynamic

system and provides important insights. Previous works have

studied the observability properties of VINS, and employed

the results of their analysis to improve the consistency of the

estimator [8]. Specifically, in [7], [8], it was shown that, for
generic motions, a VINS has four unobservable directions

(three for global translation and one for global yaw).

In this paper, we are interested in the case when the

VINS is deployed on a ground vehicle, whose motion is

approximately planar, and, for the most part, along a straight

line (e.g., when moving forward) or a circular arc (e.g., when

turning). In particular, we are interested in the impact that

such motions have on the VINS’s observability properties,

and hence the accuracy of the corresponding estimator.

A. Constant Acceleration

Consider that the platform moves with constant local
linear acceleration (e.g., on a circle), i.e.,

Ia(t) � C(IqG(t))
Ga(t) ≡ Ia, ∀ t ≥ t0 (5)

where Ia is a constant vector with respect to time, we prove

the following theorem:

Theorem 1: The linearized monocular-VINS model of (3) -

(4) has the following additional unobservable direction,

besides the global translation and yaw, if and only if condi-

tion (5) is satisfied:

Ns =
[
01×3 01×3

GvT
I0

− IaT GpT
I0

GfT
1 · · · GfT

N

]T
(6)

Proof : See Appendix I.

Remark: The unobservable direction in (6) corresponds to

the scale, as shown in [14].

The physical interpretation of Thm. 1 is that, when the

local acceleration is non-varying, one cannot distinguish the

magnitude of the true body acceleration from that of the

accelerometer bias, as both of them are, at least temporarily,

constant. As a consequence, the magnitude of the true body

acceleration can be arbitrary, leading to scale ambiguity.

At this point, we should note that in most cases in practice,

a ground vehicle moves on a plane with (almost) constant

acceleration, such as when following a straight line path with

constant speed or acceleration, or when making turns along a

circular arc with constant speed, etc. Based on Thm. 1, these

motions render the scale estimated by the VINS inaccurate.

B. No Rotation

Consider that the platform has no rotational motion, i.e.,

the orientation remains the same across time:

It
G C � C(IqG(t)) ≡ I0

G C, ∀ t ≥ t0 (7)
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where It denotes the IMU frame at time t. Then, the

following theorem regarding observability holds:

Theorem 2: The linearized VINS model of (3) - (4) has

the following additional unobservable directions, besides the

global translation, if and only if condition (7) is satisfied:

No =
[
I0
G CT 03×3 �GvI0

� − �Gg�I0G CT �GpI0
�

�Gf1� · · · �GfN�
]T

(8)

Proof : See Appendix II.

Remark: The unobservable directions in (8) correspond to

all 3 dof of global orientation instead of only yaw [14].

The physical interpretation of Thm. 2 is that, when there

is no rotational motion, one cannot distinguish the direction

of the local gravitational acceleration from that of the ac-

celerometer bias, as both of them are, at least temporarily,

constant. As a consequence, the roll and pitch angles become

ambiguous.

The motion profile considered in Thm. 2 is the case

typically followed by a robot moving on a straight line, or

(for a holonomic vehicle) sliding sideways. In such cases,

due to the lack of observability, the orientation estimates

generated by the VINS become inaccurate.

In summary, moving with constant acceleration or without

rotating can introduce extra unobservable directions to the

VINS model. At this point, we should reiterate that, although,

in practice, these specific motion constraints are never exactly
satisfied all the time, when the robot (even temporarily)

approximately follows them, it acquires very limited infor-

mation along the unobservable directions. This will cause the

information (Hessian) matrix estimated by the VINS to be

severely ill-conditioned, or even numerically rank-deficient,

and hence degrades the localization performance. The impact

of such motion on the VINS accuracy is demonstrated

experimentally in Sect. V.

Among the two cases of unobservability, that of global

orientation (see Thm. 2) is the one that can be easily alle-

viated by allowing the robot to deviate from its straight-line

path. On the other hand, rendering scale observable is quite

challenging as it would require the robot to constantly change

its acceleration, which would increase the wear and tear of

its mobility system. Instead, in what follows, we propose to

address this issue and ensure scale observability by extending

the VINS to incorporate measurements provided by the

robot’s wheel odometer.

IV. VINS: INCORPORATING EXTRA INFORMATION

In order to improve the performance of VINS for wheeled

vehicles, we hereafter present our methodology for incorpo-

rating two additional sources of information: (i) Odometry

measurements and (ii) Planar-motion constraints.

A. VINS with Odometer

Most ground vehicles are equipped with wheel encoders

that provide low-frequency, often noisy, and maybe only

intermittently, reliable measurements of the motion of each

wheel. On the other hand, these measurements contain scale

information necessary for improving the accuracy of VINS

Fig. 1. Geometric relation between the IMU, {I}, and odometer, {O},
frames when the robot moves from time step k to k + 1.

under constant-acceleration motions. In particular, the wheel-

encoder data can be transformed into local 2D linear and

rotational velocity measurements by employing the odometer

intrinsics,4 i.e.,

v =
rlwl + rrwr

2
, w =

rrwr − rlwl

a
(9)

where wl, wr are the rotational velocities of the left and right

wheels, respectively, rl, rr are their corresponding radii, and

a denotes the vehicle’s baseline.

First, we show that adding these odometric measurements

makes the scale of VINS observable:

Theorem 3: Given the odometry measurements of (9), the

scale direction in (6) of the linearized VINS model [see (3) -

(4)] becomes observable.

Proof : See Appendix III.

In particular, the odometer’s linear velocity measurements

contain the absolute scale information. Thus, an odometric

sensor improves the localization accuracy of VINS not only

by recording additional motion measurements, but primarily

by providing critical information along the VINS’s scale

direction which often becomes unobservable due to the

vehicle’s motion.

In order to process the noisy odometer data in a robust

manner, instead of using the velocity measurements in (9),

we propose to integrate them and fuse the resulting 2D

displacement estimates into the 3D VINS. We start by

deriving the measurement model, where we assume that,

between consecutive odometer readings, the motion is planar.

Hence, the transformation between two consecutive odome-

ter frames, {Ok} and {Ok+1}, involves a rotation around

only the z axis by an angle OkφOk+1
:

Ok
Ok+1

C = Cz(
OkφOk+1

) (10)

and a translation within the x-y plane, i.e., the first two

elements of the translation vector OkpOk+1
. Integrating the

linear and rotational velocities obtained from the odometer

4In this work, we compute offline the batch least-squares estimates
of the wheel encoder intrinsics, including the baseline and the radius of
each wheel, based on visual, inertial, and odometry data. Subsequently,
we consider them as known quantities. Note that these intrinsic states are
observable within VINS. The proof is omitted due to lack of space.
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provides measurements to these 3-dof quantities, i.e.,

φk = OkφOk+1
+ nφ (11)

dk = ΛOkpOk+1
+ nd, Λ =

[
e1 e2

]T
(12)

where
[
nφ nT

d

]T
is a 3×1 zero-mean Gaussian noise vector.

Furthermore, from the geometric constraints, depicted in

Fig. 1, the transformation between two consecutive odometer

frames, at time steps k and k + 1, can be written as:

Ok
Ok+1

C = O

I C
Ik
G C

Ik+1
G CT O

I C
T (13)

OkpOk+1
= OpI +

O

I C
Ik
G C(GpIk+1

− GpIk

− Ik+1
G CT O

I C
T OpI) (14)

where O
I C and OpI are the rotation and translation of the

odometer-IMU extrinsics,5 respectively.

Next, we employ (11)-(14) to derive the Jacobians and

residuals of the corresponding measurement models to be

used by the VINS estimator.

1) Rotational Component: By equating (10) to (13), and

employing small-angle approximations in the rotation matri-

ces involved, we obtain the following error equation:

δφ = O

I C δθIk
− O

I C
Ik
G Ĉ

Ik+1
G ĈT δθIk+1

− nφe3 (15)

with �δφ� = I3 −Cz(φk)
Ok
Ok+1

ĈT

Ok
Ok+1

Ĉ = O

I C
Ik
G Ĉ

Ik+1
G ĈT O

I C
T

where Ĉ denotes the estimate of the rotation matrix C, and

δθ is the error state of the corresponding quaternion parame-

terization. The third element of the vector δφ represents the

angular error between the measured and the estimated in-

plane rotation. Multiplying both sides of (15) with eT
3 yields

the Jacobians and residual:

HδθIk
= eT

3
O

I C , HδθIk+1
= −eT

3
O

I Ĉ
Ik
G Ĉ

Ik+1
G ĈT

r = eT

3 δφ (16)

2) Translational Component: By substituting (14) in-

to (12) and linearizing, it is straightforward to obtain the

following Jacobians and residual:

HδθIk
= ΛO

I C�ξ�, HδθIk+1
= ΛO

I C
Ik
G Ĉ

Ik+1
G ĈT �OI CT OpI�

HpIk
= −ΛO

I C
Ik
G Ĉ , HpIk+1

= ΛO

I C
Ik
G Ĉ

r = dk − Λ(OpI +
O

I C ξ) (17)

with ξ � Ik
G Ĉ(Gp̂Ik+1

− Gp̂Ik
− Ik+1

G ĈT O

I C
T OpI).

Finally, (16) and (17) represent stochastic constraints

between the poses of the platform, and can be combined

in a tightly-coupled manner into standard VINS estimators.

B. mVINS: VINS within a Manifold

In many cases in practice, the trajectory of a moving

object often lies within some manifold. Ground vehicles,

for example, travel mostly on a plane, especially when

5In this work, we compute offline the batch least-squares estimates
of the odometer-IMU extrinsics, based on visual, inertial, and odometry
data. Subsequently, we consider them as known quantities. The observable
directions of the VINS with odometer extrinsics are presented in [15].

Fig. 2. The roll (left) and pitch (right) angles in degrees across time, when
the robot is moving on a flat surface. The mean is -0.08 and 0.2 degree,
and the standard deviation is 0.3 and 0.7 degree, respectively.

navigating indoors. The knowledge of this specific motion

manifold can provide additional information for improving

the localization accuracy of VINS.

A motion manifold can be described mathematically as

geometric constraints, g(x) = 0, where g is, in general, a

nonlinear function of the state x. There are two approaches

for incorporating such information into a VINS:

1) Deterministic Constraints: A standard VINS estimator

(e.g., a filter or a smoother) optimizes a cost function C(x)
arising from the information in the sensor (visual, inertial,

and potentially odometric) data (e.g., [4], [6], [10], [12]),

while the motion manifold is described as a deterministic

constraint of the optimization problem, i.e.,

min C(x) (18)

s.t. g(x) = 0

For VINS, the cost function C(x) typically takes the

form of nonlinear least squares, and (18) can be solved by

employing iterative Gauss-Newton minimization [16].

2) Stochastic Constraints: In practice, the motion mani-

fold is never exactly satisfied. Fig. 2 depicts the platform’s

roll and pitch angles across time, when a ground robot (a

Pioneer 3 in our case) is moving on a flat surface. During

an ideal planar motion, the roll and pitch angles would have

remained constant. As evident, however, this is not the case

in practice due to the vibrations of the moving platform and

the unevenness of the surface. To account for such deviations,

we model the manifold as a stochastic constraint g(x) = n,

where n is assumed to be a zero-mean Gaussian process

with covariance R, and incorporate this information as an

additional cost term:

min C(x) + ||g(x)||2R (19)

Note that (19) can be solved by employing standard

VINS estimators. Moreover, this stochastic approach (as

compared to the deterministic one) provides more flexibility

for rejecting false information due to outliers. Specifically,

we employ the Mahalanobis distance test to detect and

temporally remove the constraints when they are least likely

(in the probabilistic sense) to be satisfied (e.g., when the

robot goes over a bump).

In what follows, we focus on a specific manifold, the

one corresponding to planar motion, and present in detail
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Fig. 3. Geometric relationship between the IMU, {I}, odometer, {O},
and plane, {π}, frames when the robot moves on the plane, at time step k.

how to employ this information in VINS. The frame of the

plane, {π}, is defined so that the x− y plane coincides with

the physical plane. We parameterize the plane with a 2-dof

quaternion, πqG, representing the orientation between the

plane frame and the global frame, and a scalar πzG, denoting

the perpendicular distance from the origin of the global frame

to the plane. The error state of the quaternion πqG is defined

as a 2 × 1 vector δθπ so that the error quaternion is given

by δq �
[
1
2δθ

T
π 0 1

]T
. Note that our parameterization

agrees with the fact that a plane in the 3D space has 3 dof. As

depicted in Fig. 3, we can express the geometric constraint

of the odometer frame, {O}, moving within the plane, as:

g(x) =

[
ΛO

I C
Ik
G Cπ

GC
Te3

πzG + eT
3
π
GC(GpIk

− Ik
G CT O

I C
T OpI)

]
= 0 (20)

where the first block element (2×1 vector) corresponds to

the planar rotational constraint, i.e., that the roll and pitch

angles are zero between {π} and {O}, while the second

block element (scalar) corresponds to the planar translational

constraint, i.e., that the position displacement along the z-

axis is zero between {π} and {O}.
Lastly, we provide the Jacobians of the planar model,

derived from (20), employed by the VINS estimator:

i) Rotational component:

HδθIk
= ΛO

I C�IkG Ĉπ
GĈ

Te3�
Hδθπ = ΛO

I C
Ik
G Ĉπ

GĈ
T
[−e2 e1

]
(21)

ii) Translational component:

HδθIk
= eT

3
π
GĈ

Ik
G ĈT �OI CT OpI�

Hδθπ = (Gp̂Ik
− Ik

G ĈT O

I C
T OpI)

Tπ
GĈ

T
[−e2 e1

]
HpIk

= eT

3
π
GĈ , HzG = 1. (22)

V. EXPERIMENTAL RESULTS

We aim to examine the impact of different motions on

the localization accuracy of VINS, as well as to validate

the proposed methods for incorporating information from the

odometer and the motion manifold. Note that our observabil-

ity findings and the proposed methods are generic and not re-

stricted to any particular VINS estimator. In our experiments,

Fig. 4. x−y overview of the Pioneer robot’s trajectory during the circular-
motion experiment: The ground truth is shown in blue solid line, while the
VINS estimate is shown in red dashed line.

we chose the square-root inverse sliding window filter (SR-

ISWF) [6] that is implemented with single-precision data

types, in order to obtain highly-efficient localization results

on mobile devices.6

Our testing platform involves commercial-grade sensors

and CPU: A Pioneer 3 DX robot,7 with a Project Tango

tablet [17] mounted on it for visual and inertial sensing, as

well as for processing. This tablet has a 2.3 GHz quad-core

NVIDIA Tegra K1 CPU and 4 GB on-chip RAM, and is

able to record: (i) MEMS-based IMU data, at 100 Hz, and

(ii) Grayscale images from its wide field-of-view camera,

with a resolution of 640×480, at 30 Hz. Around 200 FAST

corners [18] are extracted from each image and tracked

using the Kanade-Lucas-Tomasi (KLT) algorithm [19] at a

frequency of 15 Hz. Then, a 2-pt RANSAC [20] is used for

initial outlier rejection. The SR-ISWF estimator maintains a

sliding window of 15 poses, which are selected at a frequency

of about 7 Hz (depending on the motion).

A. Assessment of the Motion’s Impact

We compare the localization results of the VINS, with-

in the same environment, between two motion profiles:

(i) Generic motion, where we hand-hold the tablet and

walk regularly, and (ii) Constant (local) acceleration motion,

where the tablet is mounted on the Pioneer robot that follows

a circular motion. Fig. 4 illustrates the VICON8 ground

truth and the VINS filter’s estimated trajectory. Note that

as expected in practice, the vehicle’s path (ground truth) is

not a perfect circle; Instead, it only approximately follows

one of the special motions considered here. Regardless, as

evident from Fig. 4, significant scale error appears in the

VINS estimates, which validates the conclusion of Thm. 1.

6Similar results were observed when using the native Google Tango [17]
VINS onboard the tablet, and are omitted from here due to lack of space.

7http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx
8http://www.vicon.com/
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Fig. 5. Scale ratio results for: (i) Pioneer circular motion (blue solid line)
with mean 0.16 and std 0.08; (ii) Hand-held motion (red dashed line) with
mean 3e-3 and std 0.03.

We further compare the scale ratio between the two motions

considered, as shown in Fig. 5. The scale ratio is computed

as the estimated distance between consecutive poses divided

by that of the ground truth, and shifted by one:

SR =
dest
dgt

− 1 (23)

which measures the quality of the scale estimates, i.e., the

closer this quantity is to zero, the better is the scale estimate.

As evident, the scale ratio corresponding to the hand-held

motion stays around zero, while that of the circular motion

drifts away. Finally, the positioning root mean square error

(RMSE) of the hand-held vs. circular motion is 14 cm

vs. 81 cm, respectively. These results confirm that when

a vehicle undergoes (even approximately) special motions,

the reduced information available to the VINS along the un-

observable directions significantly degrades the localization

accuracy of the corresponding estimator.

B. System Performance Test

We further test the localization accuracy of our system on

the Pioneer robot. Five datasets are collected by driving the

Pioneer each time for ∼ 1 km through a large building. In

addition to the IMU-camera data, the Pioneer wheel encoders

provide readings at 10 Hz. We compare the localization

results among the following setups: (i) VINS only, (ii) VINS

plus odometer (VO), (iii) VINS plus odometer plus determin-

istic planar constraint (VOD), and (iv) VINS plus odometer

plus stochastic planar constraint (VOS). The ground truth is

computed from the batch least squares (BLS) offline, using

all available (visual, inertial, and odometric) measurements.

Fig. 6 illustrates the estimated trajectories, overlayed on

the building’s floor plan as reference. As evident, the pure

VINS suffers from very large errors due to the restricted

motion (mostly constant-speed, on straight lines), while as

more information becomes available, the positioning ac-

curacy improves significantly. Also, the VOS outperforms

the VOD, since the stochastic constraint better models the

approximately planar motion due to the vibrations of the

moving platform and the unevenness of the ground surface.

Table I compares quantitatively the positioning error between

different methods across all datasets (DS), where each block

contains the following RMSE (in meters) results: xy - z - xyz
total position - as percentage of the total distance traveled.

From these results, we draw the following conclusions: First,

between VO and VINS, when the odometer measurements

are added, the x-y positioning accuracy is improved dramat-

ically, since more scale information is injected. Second, by

comparing VOD and VOS to VINS and VO, it is evident that

the planar motion constraints improve mostly the estimates in

the z direction, as the error along the perpendicular direction

is restricted by the constraint. Lastly, the stochastic constraint

of VOS consistently improves the positioning accuracy, while

the deterministic one of VOD has a negative impact, due to

its modeling error.

In terms of efficiency, our system runs in real time on

the tablet. Specifically, the whole VINS pipeline is taking

68 msec per cloned pose, including the 36 msec spent

on the SR-ISWF filter update. Note also that our efficient

implementation of the proposed methods (for processing

odometer data and planar constraints) takes less than 1 msec

for each. Overall, ∼ 50% of the total CPU is used by our

program when performing updates at ∼ 7 Hz.

Finally, it is worth mentioning that our system is

able to work robustly in both indoor and outdoor

environments. Demonstrating videos are available at:

http://mars.cs.umn.edu/research/VINSodometry.php

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proved that the VINS scale, or 2 addition-

al dof of its global orientation, become unobservable when

the robot moves with constant acceleration, or it is not rotat-

ing, respectively. For this reason, and as demonstrated in our

experiments, directly employing VINS on a wheeled robot

results in inaccurate pose estimates. To address this issue,

we incorporated wheel-encoder measurements into VINS and

showed that the scale becomes observable. Furthermore, we

introduced mVINS that properly models the ground robot’s

almost-planar motion and directly employs this information

in the estimator. Experimental results showed that special

motions indeed lead to larger positioning errors when using

VINS on a wheeled robot. Incorporating, however, odometry

measurements, as well as stochastic constraints modeling the

vehicle’s planar motion, provide additional information and

lead to significant improvements in positioning accuracy.

As part of our future work, we plan to extend the proposed

mVINS such that it allows to model more complex robot

motions (e.g., moving between multiple flat surfaces and

climbing stairs), as well as to compensate for wheel slippage.

APPENDIX I

PROOF OF THEOREM 1

In this section, we prove that the scale in (6) is an

unobservable direction of the VINS model, if and only if the

platform is moving with constant local linear acceleration

[see (5)]. We follow the approach presented in [8], that

examines the right null space of the observability matrix of

the corresponding linearized VINS model. As is the case
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Fig. 6. Illustration of the indoor Pioneer navigation trajectories, shown in red, estimated by the VINS only (left), the VOD (middle), and the VOS (right),
overlayed on the floor plan. The ground truth, computed from the BLS method offline, is shown in blue.

TABLE I

COMPARISONS: POSITIONING RMSE (IN METERS) OF DIFFERENT METHODS ACROSS DATASETS (XY - Z - XYZ - %)

DS Path (m) VINS VO VOD VOS

1 1080 9.8 - 1.5 - 9.9 - 0.91% 2.4 - 1.6 - 2.9 - 0.27% 4.3 - 0.1 - 4.3 - 0.4% 2.7 - 0.08 - 2.7 - 0.25%

2 876 13.8 - 1.1 - 13.8 - 1.6% 1.9 - 1.2 - 2.2 - 0.26% 4.5 - 0.14 - 4.5 - 0.52% 1.9 - 0.09 - 1.9 - 0.22%

3 954 8.3 - 1.2 - 8.4 - 0.88% 3.2 - 1.5 - 3.5 - 0.37% 7.8 - 0.22 - 7.8 - 0.82% 3.1 - 0.11 - 3.1 - 0.32%

4 1048 11.7 - 0.99 - 11.7 - 1.1% 3.7 - 1.0 - 3.8 - 0.37% 7.6 - 0.26 - 7.6 - 0.73% 3.6 - 0.07 - 3.6 - 0.34%

5 1034 9.7 - 0.99 - 9.8 - 0.94% 1.6 - 1.4 - 2.1 - 0.2% 3.2 - 0.12 - 3.2 - 0.31% 1.6 - 0.08 - 1.6 - 0.15%

in [8], and for clarity of presentation, we include only one

feature in the state vector (the extension to multiple features

is straightforward).

As previously shown (see (51) in [8]), any block row, Mk,

of the observability matrix has the following structure:

Mk = HkΦk,1= Γ1

[
Γ2 Γ3 − δtkI3 Γ4 − I3 I3

]
(24)

for any time tk ≥ t0, with the matrices Γi, i = 1, . . . , 4,

defined by (52)-(55) in [8]. From the property of the ob-

servability matrix, the scale direction, Ns, is unobservable,

if and only if, MkNs = 0 [21]. From (24) and (6), together

with the definition of the matrices Γi, we obtain:

MkNs = Γ1(−GvI0
δtk − Γ4

Ia− GpI0
+ Gf) (25)

with Γ4
Ia =

∫ tk

t0

∫ s

t0

G

Iτ
C dτds · Ia (26)

=

∫ tk

t0

∫ s

t0

G

Iτ
CIa dτds (27)

=

∫ tk

t0

∫ s

t0

G

Iτ
CIτa(τ) dτds (28)

=

∫ tk

t0

∫ s

t0

Ga(τ) dτds (29)

=

∫ tk

t0

(GvIs
− GvI0

) ds (30)

= GpIk
− GpI0

− GvI0
δtk (31)

where the equality from (27) to (28) holds if and only

if the constant acceleration assumption in (5) is satisfied.

Substituting (31) into (25) yields:

MkNs = Γ1(
Gf − GpIk

) = Hc,k
Ik
G C(Gf − GpIk

)

= Hc,k
Ik f = 0 (32)

where the last equality holds since the camera perspective-

projection Jacobian matrix, Hc,k, has as its right null space

the feature position in the IMU frame (see (30) in [8]).
Lastly, this new unobservable direction is in addition to

the four directions corresponding to global translation and

yaw, i.e., Ns and N1 in (57) of [8] are independent, since

the 4th block element of N1 is zero while that of Ns is not.

APPENDIX II

PROOF OF THEOREM 2

In what follows, we prove that the 3-dof global orientation

in (8) is an unobservable direction of the VINS model, if

and only if the platform does not rotate [see (7)]. Similarly

to the proof presented in Appendix I, in this case, we need

to show that MkNo = 0. From (24) and (8), together with

the definition of the matrices Γi, i = 1, . . . , 4, we obtain:

MkNo= Γ1(Γ4
I0
G C− 1

2
δt2k I3)�Gg� (33)

= Γ1(

∫ tk

t0

∫ s

t0

G

Iτ
C dτds · I0

G C− 1

2
δt2k I3)�Gg� (34)

= Γ1(

∫ tk

t0

∫ s

t0

G

I0
C dτds · I0

G C− 1

2
δt2k I3)�Gg� (35)

= Γ1(

∫ tk

t0

∫ s

t0

1 dτds · G

I0
CI0

G C− 1

2
δt2k I3)�Gg�

= Γ1(
1

2
δt2k I3 − 1

2
δt2k I3)�Gg� = 0 (36)

5161



where the equality from (34) to (35) holds if and only if the

no rotation (i.e., constant orientation) assumption in (7) is

satisfied.

Lastly, these new unobservable directions are in addition

to the three directions corresponding to global translation,

i.e., No and Nt,1 in (57) of [8] are independent, since the

first block element of Nt,1 is zero while that of No is a

(full-rank) rotational matrix.

APPENDIX III

PROOF OF THEOREM 3

We hereafter prove that the scale in (6) is observable for

the VINS model when an odometer is present. Specifically,

the odometer provides measurements of the 2-dof planar

component of the robot’s linear velocity:

vk = ΛOkvOk
= ΛO

I C(IkG CGvIk
+ �ωm(tk)− bg(tk)�IpO)

from which we obtain the following measurement Jacobians

with respect to the states involved:

HO

δθ = ΛO

I C�IkG CGvIk
� , HO

bg = ΛO

I C�IpO�
HO

v = ΛO

I C
Ik
G C (37)

The odometry measurements provide extra block rows in the

observability matrix, in addition to the ones corresponding

to the camera observations [see (24)]. From (37) and the

analytical form of the state transition matrix, Φk,1 (see (44)

in [8]), it can be verified that these extra block rows have

the following structure:

MO

k = HO

kΦk,1

= ΓO

1

[
ΓO
2 ΓO

3
Ik
G C Ik

G CΦ
(3,4)
k,1 03×3 03×3

]
with ΓO

1 = ΛO

I C

ΓO

2 = �IkG CGvIk
�Φ(1,1)

k,1 + Ik
G CΦ

(3,1)
k,1

ΓO

3 = �IkG CGvIk
�Φ(1,2)

k,1 + �IpO�+ Ik
G CΦ

(3,2)
k,1 (38)

for any time tk ≥ t0, with Φ
(i,j)
k,1 denoting the (i, j)-th block

element of the state transition matrix Φk,1. From Thm. 1, the

scale becomes unobservable if and only if the acceleration

is constant. Therefore, it suffices to show that MO

kNs 	= 0
when (5) is satisfied. Specifically:

MO

kNs = ΓO

1 (
Ik
G CGvI0

− Ik
G CΦ

(3,4)
k,1

Ia) (39)

= ΛO

I C
Ik
G C(GvI0

+

∫ tk

t0

G

Iτ
C dτ · Ia) (40)

= ΛO

I C
Ik
G CGvIk

= ΛOkvIk
(41)

where we have followed the same reasoning as in (26)-

(30). The quantity in (41) is non-zero, if the velocity of

the IMU frame, expressed in the odometer frame, does not

vanish along the x − y directions, i.e., if the platform has

translational motion along the horizontal plane. Under this

condition, which is satisfied in practice as long as the vehicle

does not stay static forever, the odometer measurements

make the scale observable.
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