
Efficient Alignment of Visual-Inertial Maps
Kourosh Sartipi and Stergios I. Roumeliotis

Google Inc, CA, USA, 94043
{sartipi,stergiosr}@google.com

Abstract. In this paper, we address the problem of concurrently computing the
transformation between multiple, gravity-aligned maps given common point fea-
ture observations. In particular, we formulate the problem as a minimization of the
distances between shared features expressed with respect to different maps. We
show that by marginalizing the maps’ relative positions, the KKT conditions of the
resulting minimization problem correspond to a system of multivariate polynomial
equations (in the sin and cos of the relative yaw angles) which can be solved an-
alytically for the case of a few maps. Furthermore, and to improve the efficiency
when considering numerous maps, we present a fast, iterative process for deter-
mining the unknown relative map orientations.

1 Introduction

Creating an accurate 3D map within a GPS-denied area is required in a wide range of
applications such as virtual and augmented reality. A camera and an inertial measure-
ment unit (IMU) sensor pair is ideal for such scenarios because of their availability in
most mobile devices. Their low computational resources, however, limit the size of the
maps that one can create in real time using visual and inertial measurements. For this
reason, many recent approaches to simultaneous localization and mapping (SLAM) em-
ploy a fast front-end based on a filtering algorithm (e.g., [21]) while mapping is usually
performed either offline or at a lower rate on a server. 1

In order to reduce the dependence on pre-computed maps or the existence of a cloud
infrastructure, recent work has focused on performing on-device mapping. One such
popular method is ORB-SLAM [13], where the front-end tracks the camera position
and orientation (pose) in real-time, while the back-end computes the local map and pro-
cesses loop closures. To limit the time for optimizing over a large map, [15] divides
it into multiple overlapping submaps, where each of them is optimized independently,
and then aligned by iteratively optimizing only the variables involved in the inter-map
measurements. In the aforementioned methods, new loop-closures could cause updates
propagating through the entire system and introducing delays to the map optimization as
the state size increases. These limitations motivate multi-map approaches which bound
the time for creating each map.

Early such approaches (e.g., [20]) employ variants of the extended Kalman filter
(EKF) to estimate the device’s pose and a local map of the surrounding features, while
maintaining a global map containing the history of observed features. These methods,
however, have quadratic, in the number of features, memory requirements due to storing
the covariance matrix for the global map, rendering them unsuitable for mobile devices.
To reduce the memory and processing cost, other approaches, such as [16] only update
the local map in the exploration phase and postpone applying the loop-closure correc-
tions between the maps. These updates, however, could potentially propagate through all
the maps, delaying the response of the system.

1 For a review of methods employing offline maps or maps from a remote server, please see [3,
7] and references therein.



2 K. Sartipi and S. I. Roumeliotis

Alternatively, Cunningham et al. [6] employ a smoothing approach to take advan-
tage of the sparse structure of the problem in a multi-device setting, where they jointly
optimize the common features and the transformations between the maps. As new mea-
surements are processed, however, it is often required to update all the maps, which leads
to significant delays. In [7], although each map is optimized independently (and hence
in parallel), its last map-merging step has cost cubic in the number of features common
to the maps, thus limiting the size of the area that can be mapped on a mobile device. A
different process was introduced in [10, 12] where the concept of “anchor nodes” is em-
ployed to represent the transformations between different maps in a pose-graph setting.
The system is then optimized incrementally for all the poses and map transforms, which
is computationally expensive as it involves all the states in the system.

In [3], two distributed optimization schemes on pose graphs are proposed with differ-
ent communication bandwidth requirements where each robot updates its states based on
information from other robots, as well as its own observations. Employing this method
for a centralized, multi-map setup on a mobile device is not desirable however, since all
submaps require updates.

In the aforementioned approaches [6, 7, 10, 12], new measurements could potentially
cause the estimates of all maps to be updated, thus incurring a high processing cost. As
it was shown in [15], however, the local estimates of the maps are typically unaffected
by the map-merging and joint optimization process. Hence, given accurate maps and
their common feature correspondences, one only needs to compute the transformations
between the maps, which will allow aligning them.

Estimating the 6 degrees of freedom (d.o.f.) transformation between only two maps
was first solved in closed-form by Horn [9]. This method was extended to multiple maps
in [1], where a least squares problem for minimizing the distance between common map
features was formulated, then the relative map positions were eliminated and the result-
ing cost function of only map orientations was minimized in an iterative manner. Other
methods such as [11, 19] employ a similar minimization approach by employing rotation
matrices instead of unit quaternions to represent orientation. Alternatively, Chaudhury
et al. [2] relax the non-linear, constrained least-squares minimization to a semidefinite
program and show improved convergence properties. These algorithms, however, do not
take advantage of the problem’s structure for cases where the accelerometer measure-
ments render the direction of gravity observable [8]. Specifically, the roll and pitch an-
gles of all map frames are known, reducing the unknown degrees of freedom between
relative maps to four (three for position and one for rotation about gravity). Furthermore,
they do not incorporate the uncertainty of common feature constraints, which as we will
show, improves accuracy. In summary, the main contributions of this paper are:

– We introduce a computationally efficient method for adjusting multiple gravity-
aligned maps given common point feature constraints. Moreover, we incorporate
the uncertainty in the feature estimates so as to improve accuracy, and introduce a
relaxation to our approach to further reduce the processing cost.

– We validate the efficiency and accuracy of our algorithms quantitatively using room
and building-scale datasets comprising multiple maps.

2 Technical Approach

Consider N gravity-aligned 3D feature maps with known feature correspondences and
unknown transformations between the maps created through a process similar to the
algorithm of [7]. Let Fij be the set of common features between maps i and j, 1pi
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and 1
iC the position and orientation of map i with respect to map 1, respectively, where

1
iC = C(e3,

1θi) with
[
e1 e2 e3

]
= I3 in which I3 is the 3× 3 identity matrix, and ifm

the position of feature m in map i. We define the cost function to be minimized as

C =

N∑
i,j=1

∑
fm∈Fij

||1pj − 1pi + 1
jC

jfm − 1
iC

ifm||2Ωijm
(1)

where Fii is an empty set andΩijm is the covariance associated with each cost term.
We start by stating that at its minimum, the cost function C in (1) will satisfy ∂C

∂1pk
=

0, for k = 2, . . . , N , which results in
N∑
i=2

Aki
1pi −

N∑
i=2

BkiK
1ui − 1ak = 0 (2)

where

Aki ,

{
−
∑

fm∈Fik
Ω−1ikm k 6= i∑N

i=1

∑
fm∈Fik

Ω−1ikm k = i
(3)

Bki ,

{∑
fm∈Fik

Ω−1ikmL(ifm) k 6= i

−
∑N

l=1

∑
fm∈Flk

Ω−1lkmL(kfm) k = i
(4)

1ui ,

[
cos(1θi)
sin(1θi)

]
, K ,

[
e1 e2

]
, L(

xy
z

) ,

x −y 0
y x 0
0 0 z

 (5)

1ak ,
∑

fm∈F1k

Ω−11km
1fm +

N∑
i=2

Bkie3. (6)

Defining A, B and a as the matrices and vector whose block elements are Aki, Bki,K
and 1ak, respectively, it is easy to show that

1pk = 1tk +

N∑
i=2

Tki
1ui (7)

where Tki and 1tk are 3× 2 matrices and 3× 1 vectors, respectively, and are defined as

A−1a =


1t2

...
1tN

 , A−1B =

T22 . . . T2N

...
. . .

...
TN2 . . . TNN

 . (8)

Substituting (7) into (1) yields a cost function in the orientations only:

C =

N∑
i,j=1

∑
fm∈Fij

||rijm +

N∑
k=2

Qijmk
1uk||2Ωijm

(9)

with

rijm ,1tj − 1ti + L(jfm)(e3 + δ1je1)− L(ifm)(e3 + δ1ie1) (10)

Qijmk , Tjk −Tik + δjkL(jfm)K− δikL(ifm)K (11)

where δij is the Kronecker delta and we defined 1t1 , 03×1 and T1k , 03×2. Further-
more, expanding (9) will result in an expression of the form:

C = C0 + v̄T ū + ūTW̄ū (12)
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where ū ,
[
1uT

2 . . .
1uT

N

]T
, C0 ,

∑N
i,j=1

∑
fm∈Fij

‖rijm‖2Ωijm
and

v̄ ,

v2

...
vN

 , W̄ ,

W22 . . . W2N

...
. . .

...
WN2 . . .WNN

 (13)

vk , 2

N∑
i,j=1

∑
fm∈Fij

QT
ijmkΩ

−1
ijmrijm (14)

Wkl ,
N∑

i,j=1

∑
fm∈Fij

QT
ijmkΩ

−1
ijmQijml. (15)

Note that (12) can be minimized analytically subject to the constraints 1uT
k
1uk = 1, k =

2, . . . , N , at a cost exponential in the number of maps. Specifically, by defining ν2i−3 =
cos(1θi) and ν2i−2 = sin(1θi), for i = 2, . . . , N , it is straightforward to show that (12)
becomes a quadratic with quadratic constraints of the form ν22i−3 + ν22i−2 = 1, i =

2, . . . , N . Formulating the Lagrangian L = C +
∑N

i=2 ωi(ν
2
2i−3 + ν22i−2 − 1) of (12)

and computing the KKT conditions will result into a set of quadratic equations whose
solution has complexity exponential in the number of maps N [5].

Thus, following such an approach is of practical use for only a small number of
maps. Alternatively, we employ the first-order Taylor series expansion, which results
in ū ' ˆ̄u + Gψ̃ in which ˆ̄u is the evaluation of vector ū around the current estimate
obtained analytically from pairwise map matches, and

ψ̃ ,


1θ̃2

...
1θ̃N

 , G ,


J1û2

J1û3

. . .
J1ûN

 , J ,

[
0 −1
1 0

]
(16)

where 1θ̃k = 1θk− ˆ1θk, k = 2, . . . , N , denotes the error between the true map’s, 1θk, and
estimated, 1θ̂k, orientations. Substituting (16) in (12) results in the error cost function:

C′ = C′0 + (v̄ + 2W̄ ˆ̄u)TGψ̃ + ψ̃
T
GTW̄Gψ̃ (17)

in which C′0 = C0 + vT ˆ̄u + ˆ̄uTW̄ ˆ̄u is constant. To minimize (17), we set ∂C′
∂ψ̃

= 0, then

GTW̄Gψ̃ = −GT

(
W̄ ˆ̄u +

1

2
v̄

)
. (18)

After finding ψ̃ from (18) and updating the current estimates of the map orientations
1θ⊕i = 1θ	i + ˜1θi, i = 2, . . . , N , we compute the map positions from (7) and initiate a
new iteration until convergence (||ψ̃||/(N − 1) ≤ 10−5). Note that solving (18) requires
O(N3) operations, hence the overall algorithm’s complexity is set by computing the W̄
matrix in (12), which is O(N4M) with M , max |Fij |. The matrix W̄ and vector v̄,
however, depend only on feature positions and term covariances, and hence need to be
computed only once in the iterative minimization process.

Note that in the special case where all the covariances are equal to the same scalar
times identity (i.e., Ωijm = σ2I3), we can simplify the algorithm further, achieving
lower processing at the expense of accuracy. Specifically, the cost function to minimize
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becomes

C′ =

N∑
i,j=1

∑
fm∈Fij

∥∥1pj − 1pi + 1
jC

jfm − 1
iC

ifm
∥∥2 . (19)

Following the same process as for minimizing (1), it is straightforward to show that

1pk =

N∑
l=2

γkl
1a′l −

N∑
i,l=2

γkl
1
iC

ib′l (20)

where

ia′k ,
∑

fm∈Fik

ifm,
ib′k ,

{
−iak i 6= k∑N

j=1
iaj i = k

, λki ,

{
−|Fki| k 6= i∑N

j=1 |Fjk| i = k

(21)

Λ =

λ22 . . . λ2N...
. . .

...
λN2 . . . λNN

 , Λ−1 ,

γ22 . . . γ2N...
. . .

...
γN2 . . . γNN

 . (22)

Equation (20) can be further simplified by defining 1t′k ,
∑N

l=2 γkl
1a′l and it′k ,

−
∑N

l=2 γkl
ib′l:

1pk = 1t′k +

N∑
i=2

1
iC

it′k. (23)

Computing ia′k and ib′k requiresO(N2M) operations, while findingΛ−1 hasO(N3)
cost. Note, however, that as compared to computing Aki and Bki in (2), which involve
3×3 matrix multiplications and additions, determining ia′k and ib′k involves only vector
additions. Furthermore, calculatingΛ−1 requires inverting a (N − 1)× (N − 1) matrix,
compared to A−1 in (3) which is a 3(N − 1)× 3(N − 1) matrix.

Substituting (23) into (19) and rearranging terms results in the following cost func-
tion involving only orientations:

C′ =

N∑
i,j=1

∑
fm∈Fij

||r′ijm +

N∑
l=2

1
lC

lqijm||2 (24)

where

r′ijm , 1t′j − 1t′i + δj1
jfm − δi1ifm (25)

lqijm , lt′j − lt′i + δjl
jfm − δilifm (26)

and we have defined 1t′1 , 03×1. Note that the third element of the 3× 1 vectors in (24)
will not be affected by the rotation matrices since all rotations are around the z-axis.
Hence, we can disregard the last element of the vectors r′ijm +

∑N
l=2

1
lC

lqijm in (24) to
reduce computations. This is equivalent to defining r̄ijm , KT r′ijm, lq̄ijm , KT lqijm

and 1
lR , KT 1

lCK and minimizing the following modified cost function instead:

C′′ =

N∑
i,j=1

∑
fm∈Fij

||r̄ijm +

N∑
l=2

1
lR

lq̄ijm||2 (27)
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which can be written as

C′′ = C′′0 + gT ū + ūT H̄ū (28)

where we have employed the identity 1
kR

T 1
kR = I2 and defined

C′′0 ,
∑
i,j

∑
fm∈Fij

{
‖r̄ijm‖2 +

N∑
l=2

∥∥lq̄ijm

∥∥2 } (29)

v′l , 2
∑
ij

∑
fm∈Fij

Q̄T
ijmlr̄ijm, Q̄ijml , KTL(lqijm)K (30)

Hkl ,

{∑
ij

∑
fm∈Fij

Q̄T
ijmkQ̄ijml k 6= l

02×2 k = l
(31)

g ,
[
v′T2 . . . v′TN

]T
, H̄ ,

H22 . . . H2N

...
. . .

...
HN2 . . . HNN

 . (32)

Lastly, we employ an iterative approach by first linearizing ū around its current esti-
mate, and obtain ψ̃ from:

GT H̄Gψ̃ = −GT

(
H̄ˆ̄u +

1

2
g

)
. (33)

As before, the solution to (33) is used to update the orientation estimates, compute
the positions, and initiate a new iteration until convergence.

3 Experimental Results

The visual and inertial data used in our tests were collected and processed online us-
ing two Google Pixel phones. Greyscale images of resolution 640 × 480 were saved
at 30 Hz, along with consumer-grade, MEMS-based, IMU data at 200 Hz. We have
divided our datasets into two categories: (i) Room-scale datasets with VICON ground-
truth, and (ii) Building-scale datasets for which we have used the optimal Batch Least-
Square (BLS) estimate as the ground-truth.

The visual and inertial data are first processed by the square root inverse filter [21],
which operates on IMU data and feature tracks extracted from the images. The latter are
produced by extracting FAST [17] corners and tracked by matching their corresponding
ORB [18] descriptors in consecutive images. To detect loop-closures, we follow a bag-
of-words approach using the ORB descriptors and employ the 3pt+1-RANSAC [14] for
outlier-detection. As data are processed by the filter, feature tracks, loop-closures, IMU
measurements, and the state estimates of the filter are passed to the BLS process.

Multiple maps are created by splitting temporally a dataset into smaller maps with
equal temporal lengths. This process breaks the feature tracks spanning more than one
map, but has the advantage that the common (among maps) features are known and
no extra processing is required for determining them. We start by computing the BLS
estimate of each map, and store the IMU-camera’s trajectory and the feature positions,
along with their covariances Pim. The latter are approximated by inverting the 3 × 3
diagonal blocks of the Hessian matrix corresponding to each feature. Furthermore, we
confirm the inliers among the maps’ common feature pairs by passing them through the
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2pt+1-RANSAC. Specifically, given the features 1f1,
1f2 and 2f1,

2f2, the minimal solver
of the 2pt+1-RANSAC computes the relative yaw 1θ2 and position 1p2, by minimizing
(1) analytically for the case of two maps.

To compute an initial estimate for the relative yaws, a naive solution would be to
directly use the result of the 2pt+1 RANSAC in the outlier rejection step between maps
1 and i, i = 2, . . . , N . There is, however, no guarantee that more than one common
features exist between map 1 and every other map, hence this approach is prone to failure.
Instead, we construct a graph where the nodes represent maps and the edges’ weights
are equal to the number of common features between the maps. We then compute the
Maximum Spanning Tree (MST) of this graph following [4] which computes a tree with
the maximum weights connecting all maps. Subsequently, for each map, we traverse the
MST from the map’s node to the root of the tree (i.e., map 1), and compute the relative
yaw by using only the relative transformation in the path to the root.

Given the inlier common feature constraints and an initial estimate for the map trans-
formations, we only need to evaluate the common feature constraint covariance Ωijm.
To do so, we assume that in each map i, the feature m’s error state if̃m is drawn from a
zero-mean Gaussian distribution with covariance Pim. Next, we define the noise of the
cost term resulting from the observation of feature m by maps i and j as

nijm = 1pj − 1pi + 1
jC

jfm − 1
iC

ifm (34)

Where nijm is a zero mean Gaussian noise with covariance Ωijm. By considering the
maps’ transformations as (unknown) deterministic variables, nijm ' 1

iC
if̃m − 1

jC
j f̃m

and thus its covariance is Ωijm = 1
iCPim

1
iC

T + 1
jCPjm

1
jC

T . Note that although this
approximate covariance is smaller (in the positive-definite sense) than the true covariance
of the cost terms, our results show that using it significantly improves the accuracy.

Specifically, for our evaluations, we employ the proposed map-alignment process
(see Sect. 2), to compute the map transformations and create a fused map along with
the IMU-camera aligned trajectories. The latter are then compared to the ground truth
(VICON for room-scale, BLS estimate for building-scale). Note that the errors between
the fused trajectory and the ground truth are caused by (i) errors in the map transforma-
tions (e.g., due to outliers or approximate covariances), and (ii) the map’s local trajectory
inaccuracies due to processing each map independently.

In this work, we used five datasets to evaluate our method in terms of accuracy and
efficiency (see Table 1). For datasets L1 and L2, which are building size, we use as
ground truth the optimal BLS solution. Datasets S1, S2, S3, on the other hand, are room
size where the device is moved inside a VICON room while collecting data. A visualiza-
tion of the fused trajectories against the ground truth for L1 and S1 is depicted in Fig. 1
and Fig. 2, respectively. Moreover, the position root mean square error (RMSE), the total
length of the trajectory and the computation times are provided in Table 1 for the case
of using covariances or without them (i.e., Ωijm = σ2I3), denoted by WC and WOC,
respectively. To compare the accuracy and the processing time of our methods to alter-
native approaches that compute the 6 d.o.f. transformations between the maps, we have
employed the Gauss-Newton algorithm to minimize a cost function similar to (1) where
the rotations are no longer gravity-aligned. The Gauss-Newton approach is denoted by
GN in Table 1. Additionally, we have provided the number of maps and maximum num-
ber of common features between maps. Comparing the RMSE values of GN and WC
shows that our method converges to the optimal map-alignment solution.

As previously stated (Sect. 2), while our proposed methods’ processing time is quar-
tic in the number of maps, it only grows linearly in the number of common features. This
is clearly shown when the number of maps grows by a factor of four, the time to com-
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pute the transformations grows by a factor of three hundred, while varying the number
of common features has smaller impact. Note though, even in this case the total time is
only a fraction of a second, which verifies the efficiency of our approach. Additionally,
WC times are between 10%-60% faster than GN times. We have also included the times
required to optimize the entire system in BLS (denoted by BLS Time), and the average
time of solving each map individually (denoted by Ind. Time in Table 1) so as to highlight
the advantage of using multiple maps in an online setting.

Besides the processing cost savings, Table 1 also demonstrates that our methods are,
in general, more accurate than GN estimating the maps’ 6 d.o.f. poses. This is due to
the gravity-alignment of the maps, i.e., the roll and pitch of the trajectory are accurately
estimated in the visual-inertial BLS, hence estimating them in the multi-map alignment
could lead to overfitting on the data and less accurate estimates. In some cases though,
small errors in the roll and pitch of different maps, as in dataset S3, causes the RMSE of
the 4 d.o.f. estimate to be slightly higher than that of the 6 d.o.f.

Dataset WC- WOC GN- WC- WOC- GN- Num. Max Dataset BLS Ind.
RMSE RMSE RMSE Time Time Time Maps Common Length Time Time
(cm) (cm) (cm) (ms) (ms) (ms) Features (m) (sec) (sec)

L1 30.1 38.1 30.1 371.8 201.5 515.2 21 276 752 - 6.59
L2 28.3 46.4 28.5 206.5 133.9 289.1 15 243 323 209 3.66
S1 13.0 14.6 13.1 0.7 0.6 1.2 5 18 112 82 25.5
S2 5.0 5.4 5.2 1.8 0.9 3.2 5 70 104 123 34.7
S3 8.0 10.0 7.7 1.2 0.7 1.9 5 28 104 102 18.9

Table 1: Table of RMSE errors (cm) and the calculation times. We were unable to com-
pute the BLS time of dataset L1 as the phone ran out of memory.

Fig. 1: Dataset L1
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Fig. 2: Dataset S1

4 Conclusion and Future Work

In this work, we introduced an efficient method for computing the 4 d.o.f. transforma-
tion between multiple maps given 3D point feature correspondences. We cast the map
alignment problem as a least squares minimization of the Mahalanobis distance between
common features, and solve it efficiently by eliminating the maps’ relative positions and
computing their relative yaw angles first. We have experimentally evaluated our method
in datasets of different scales (room-size and building-size) and have verified its accu-
racy and speed. As part of our future work, we seek to investigate methods that split the
maps based on criteria other than time so as to ensure high accuracy. Additionally, we
aim to further reduce the processing cost by efficiently selecting and reprocessing the
most informative features within each, as well as across multiple maps.
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