
RISE-SLAM: A Resource-aware Inverse Schmidt Estimator for SLAM

Tong Ke, Kejian J. Wu, and Stergios I. Roumeliotis

Abstract— In this paper, we present the RISE-SLAM algo-
rithm for performing visual-inertial simultaneous localization
and mapping (SLAM), while improving estimation consistency.
Specifically, in order to achieve real-time operation, existing
approaches often assume previously-estimated states to be
perfectly known, which leads to inconsistent estimates. Instead,
based on the idea of the Schmidt-Kalman filter, which has
processing cost linear in the size of the state vector but
quadratic memory requirements, we derive a new consistent
approximate method in the information domain, which has
linear memory requirements and adjustable (constant to linear)
processing cost. In particular, this method, the resource-aware
inverse Schmidt estimator (RISE), allows trading estimation
accuracy for computational efficiency. Furthermore, and in
order to better address the requirements of a SLAM system
during an exploration vs. a relocalization phase, we employ
different configurations of RISE (in terms of the number
and order of states updated) to maximize accuracy while
preserving efficiency. Lastly, we evaluate the proposed RISE-
SLAM algorithm on publicly-available datasets and demon-
strate its superiority, both in terms of accuracy and efficiency,
as compared to alternative visual-inertial SLAM systems.

I. INTRODUCTION AND RELATED WORK

Simultaneous localization and mapping (SLAM) is nec-
essary in a wide range of applications, such as robot
navigation in GPS-denied areas, autonomous driving, and
augmented/virtual reality. Recently, successful vision-only
SLAM systems have emerged that employ one or multiple
cameras [1], [2], [3]. Another popular choice is to combine
the visual information with inertial data, from an inertial
measurement unit (IMU), for increased robustness and accu-
racy [4], [5], [6], [7], [8]. In both cases, it is well known that
under certain assumptions, finding the Maximum a Posteriori
(MAP) estimate for SLAM can be cast as a nonlinear batch
least-squares (BLS) problem, and the optimal solution, for
the camera poses and feature positions, can be obtained in
either a batch [9], [10] or an incremental [11], [12] form.
These optimal approaches, however, have an increasing pro-
cessing cost with time, typically between linear and quadratic
in the number of poses and features, and thus cannot provide
high-frequency estimates when operating inside large areas.
On the other end of the spectrum, visual(-inertial) odometry
systems [4], [13], [14], [5], [15], [16], [17], [18] focus their
optimization over only a bounded sliding window of recent
poses. The latency of these methods is typically very low and
does not increase with time, but this comes at the expense
of an ever-increasing drift in the pose estimates, due to their
inability to process loop-closure measurements and perform
global adjustment.

In order to achieve accuracy and efficiency at the same
time, recent visual(-inertial) SLAM systems aim to combine

This work was supported by the National Science Foundation (IIS-
1328722, IIS-1637875).

The authors are with the Univ. of Minnesota, Minneapolis, MN, USA.
kexxx069|wuxxx834|stergios@umn.edu

the advantages of both the optimal (global) and the odometry
(local) approaches, by employing a multi-thread scheme [1],
[3], [6], [8]: A frontend thread estimates the current or
several recent poses (as well as a local map) in constant
time for real-time performance, while a backend thread
optimizes, at a higher cost and lower frequency, over the
entire trajectory (using either the optimal BLS [10] or its
approximations [19], [20], [21]), and generates more accurate
keyframe pose estimates and global maps for relocalization.
To limit the processing cost, however, all these approaches
employ approximations, e.g., keyframes involved in the
frontend’s relocalization are assumed to be perfectly known.
Ignoring the corresponding uncertainties of these states and
their cross correlations with the current states, however, leads
to inconsistent estimates.1 This means that the estimated
covariance is unduly small and does not represent correctly
the uncertainty of the current state estimates (i.e., it does
not offer a reliable measure of the tracking quality). More
importantly, combining these overly optimistic estimates
with new measurements later on can further degrade the
accuracy of the system, as new, precise measurements are
weighted less in favor of the current estimates. In fact,
this problem of inconsistency has been acknowledged in the
past, and remedies are often used to alleviate its negative
impact on estimation accuracy, e.g., by inflating the assumed
covariance of the noise corresponding to the relocalization
visual observations [25], [26]. These heuristics, however,
offer no guarantees on the estimation consistency or the
system’s performance.

On the other hand, the sparse extended information filter
(SEIF) of [27], [28] is a consistent approximate SLAM
algorithm, whose cost (between linear and cubic in the
map’s size) though for recovering the state estimate from
the information vector makes it prohibitive for real-time
operation. Specifically, although approximations involving
early-terminating iterative solvers reduce processing during
exploration, the required number of iterations for loop clo-
sures makes the cost often larger than that of direct solvers.

At this point, we should note that there exists a consistent
approximation in the filtering domain: The Schmidt-Kalman
filter (SKF) [29]. The key idea of the SKF is to update
optimally only a subset of the states (e.g., recent poses
and features) and their corresponding covariance and cross
correlation terms, while leaving the rest (e.g., past poses
and features) unaltered. By doing so, the computational cost

1As defined in [22], [23], a state estimator is consistent if the estimation
errors are zero-mean and have covariance matrix smaller than or equal to
the one calculated by the estimator. For the purposes of this work, we focus
on the covariance requirement. Note that there exist additional sources of
inconsistency, due to linearization errors and local minima (see e.g., [24]).
In this work, we focus on the inconsistency caused by the assumption that
uncertain quantities such as a map, is perfectly known.

is reduced from quadratic to linear in the (potentially very
large) size of unchanged states. Meanwhile, the uncertainty
of the past states is correctly accounted for to guarantee con-
sistent estimates. The SKF and its variants have been applied
to the SLAM problem [30], [31], [32], where their major
drawback is their high memory requirements: Quadratic in
the size of all states due to the dense covariance matrix.
Thus, the SKF cannot be employed in large-scale SLAM.
On the other hand, it is well-known that the information-
domain solutions are more suitable for large-scale SLAM,
as the Hessian matrix and its corresponding Cholesky factor
are sparse [9]. To leverage this fact, [33] adapted the SKF to
incorporate a previously-computed sparse Cholesky factor of
a given map’s Hessian. The approach, however, is a filtering
one, and can only be used to perform map-based localization
given an offline-built map, but not SLAM.

Motivated by the potential processing savings of the SKF,
as well as the low-memory requirements of the Hessian
(or equivalently its Cholesky factorization) representation of
the uncertainty, in this work, we seek to derive a Schmidt-
type estimator in the information domain, that we can apply
to the SLAM problem. To do so, we initially derived the
exact equivalent of the SKF in its square-root inverse form,
i.e., by maintaining the Cholesky factor of the Hessian,
since the corresponding portion of the information factor
does not change [34]. Surprisingly, unlike the case of the
SKF, the exact inverse-form Schmidt estimator does not pro-
vide any computational savings as compared to the optimal
solver [35]. Moreover, the involved operations introduce a
large number of fill-ins, leading to an almost dense informa-
tion factor. This eventually makes the system too slow, and
hence unsuitable for real-time long-term SLAM.

To overcome these limitations, in this work, we introduce
the resource-aware inverse Schmidt estimator (RISE), which
is derived as a further approximation of the exact inverse
Schmidt estimator [34]. The key idea behind RISE is to
drop a certain portion of the available information, so that:
i) As in the exact inverse Schmidt, past states as well as
their corresponding portion of the information factor remain
unaltered, while at the same time, ii) Recent states are
updated only approximately, instead of optimally, so as to
reduce both the processing cost and the factor fill-ins. Hence,
RISE achieves both computational and memory efficiency
by keeping the information factor sparse. Meanwhile, it is
a consistent approximation to the optimal approach, as it
only drops information, instead of assuming any state to
be perfectly known. More importantly, RISE allows trading
accuracy for efficiency, by adjusting the size of the window
of the states selected to be updated. In the extreme case
when all states are chosen for update, RISE becomes exactly
equivalent to the optimal solver without any information loss.

Furthermore, we employ the proposed RISE algorithm in
various configurations to realize an accurate and efficient
visual-inertial SLAM system, the RISE-SLAM, which main-
tains a consistent sparse information factor corresponding
to all estimated states. Specifically, our system alternates
between two modes, exploration and relocalization, based
on the availability of loop-closure measurements. In order
to balance between accuracy and efficiency, in each mode,

RISE is employed with various window sizes and different
state orders. Similarly to most recent SLAM systems, our
implementation incorporates two threads running in parallel:
A fast frontend thread for estimating the current poses and
features at a high frequency, and a lower-rate backend thread
for globally adjusting the past states to achieve high accuracy.
A key difference, however, as compared to existing systems
that solve multiple optimization problems independently in
different threads [3], [6], [8], is that RISE-SLAM always
solves a single optimization problem, partitioned into two
components each assigned to one of the two threads. This
is only possible because of the structure of RISE, whose
approximation allows focusing resources on only a subset of
states at a time. As a result, in our system, important global
corrections from the backend are immediately reflected onto
the frontend estimates, hence improving the current tracking
accuracy. In summary, our main contributions are:
� We derive the resource-aware inverse Schmidt estimator

(RISE), which approximates the exact inverse Schmidt
and has adjustable processing cost, while preserving
sparsity and ensuring consistency.

� We introduce RISE-SLAM, for building 3D maps and
relocalizing within previously-mapped areas in a con-
sistent manner with constant cost.

� We implement RISE-SLAM and assess its performance.
As compared to state-of-the-art approaches, our al-
gorithm achieves the best performance in terms of
estimation accuracy and processing time.

II. SYSTEM OVERVIEW

The proposed visual-inertial SLAM system, whose
overview is depicted in Fig. 1, employs an incremental
estimator comprising two key modes each addressing the
particular needs of the corresponding phases of SLAM: Ex-
ploration and Relocalization. During exploration, the IMU-
camera pair navigates through a new area. Thus, the feature
observations available for processing span only a short win-
dow of recent poses. During relocalization, the IMU-camera
pair enters areas it has previously visited, and acquires loop-
closure measurements that relate recent camera poses with
past ones, thus enabling to remove pose drift. Such reobser-
vations of past features, however, are typically expensive to
process, and for this reason we explicitly distinguish between
these two phases, and treat them differently.

Specifically, after initialization, the system begins in ex-
ploration mode. The estimator optimizes over a sliding
window of recent states involved in the local feature-track
measurements (1
 in Fig. 1), with constant cost (determined
by the window size). Once loop-closure measurements are
detected, the system enters the relocalization mode (2
 in
Fig. 1), and spans two threads to process local feature-track
measurements as well as loop-closure observations. In the
frontend, the system estimates a sliding window of recent
states using both types of visual measurements (3
 in Fig. 1)
with constant cost. This is a key novelty of our work and
the process for accomplishing this in a consistent manner is
detailed in Sec. V-B. The optimization of other (past) states
(5
 in Fig. 1), which has approximately linear cost in their
size, is assigned to the backend. Note that the two threads run

Frontend Thread

Backend Thread

Initialization Recent states
exploration update

Loop
closure?

Recent states
relocalization update

Loop
closure?

Update past
states?

Past states
relocalization update

Recent states
correction

Yes

Yes

No

No

Yes

Exploration

Relocalization

Transition to
relocalization

Transition to
exploration

1

3

4

6 2

5

Fig. 1. System overview. After initialization, the system starts in explo-
ration mode (Sec. IV-A), and switches to relocalization mode when a set of
loop closures is detected (Sec. V-A). When in relocalization mode, besides
the frontend thread (Sec. V-B), the system may run a backend thread to
perform global adjustment of past states (Sec. V-C), while the frontend
thread employs the backend’s feedback (i.e., updated trajectory) to correct
recent states (Sec. V-D). Once no loop closures are detected, the system
switches back to exploration mode (Sec. IV-B, IV-C).

independently so that the frontend can add new states and
provide estimates even if the backend is still running. Once
the backend finishes updating the past states, the frontend
employs its feedback to correct the recent states (4
 in
Fig. 1). Once all the states are globally adjusted, we only
need to run the frontend to update recent states (3
 in Fig. 1).
Though we could enable the backend optimization whenever
the backend thread is idle, in order to save processing, in
our implementation we choose to run the backend only once
during each relocalization phase. Finally, when there are
no more loop-closure measurements available, the system
switches back to the exploration mode (6
 in Fig. 1).

In what follows, we introduce the key algorithmic compo-
nents and contributions necessary for realizing the proposed
estimation scheme. Specifically, we first provide an overview
of the optimal square-root inverse estimator (see Sec. III-
A) used during exploration, and then present its Schmidt-
based approximation (see Sec. III-B) employed later on for
reducing the computational cost of relocalization.

III. SQUARE-ROOT INVERSE ESTIMATORS FOR SLAM

In this section, we discuss SLAM estimators in the square-
root inverse form. We start by denoting the state vector to
be estimated as x, which comprises IMU poses and feature
positions, and extends with new states as time goes by. At
every step, the estimator maintains a prior cost term of the
current state estimate, kR(x� x̂)k2, where R is the upper-
triangular information factor matrix (i.e., the Cholesky factor
of the Hessian) and x̂ is the current estimate of x. As
new visual or inertial measurements arrive, they contribute
another cost term (after linearization), kH(x� x̂)� rk2,
where H and r are the measurement Jacobian and residual,
respectively.2 Then, the updated state estimate, x̂�, is found

2We follow [15] for the state parameterization, as well as for the visual-
inertial measurement processing and cost term formulations.

by minimizing the cost function:

C = kR(x� x̂)k2
+ kH(x� x̂)� rk2 (1)

x̂� = arg min
x
C (2)

A. Optimal Estimator
The optimal solution of (2) can be computed as:

C =

�R
H

�
(x� x̂)�

�
0
r

�

2

=

�R�0
�

(x� x̂)�
�
r�

e

�

2

) x̂� = x̂ + R�
�1

r� (3)

where we have performed the following QR factorization:�
R
H

�
= Q

�
R�

0

�
;

�
r�

e

�
, QT

�
0
r

�
(4)

The main advantage of this estimator is its optimality in
minimizing the mean square error. Additionally, it is very ef-
ficient during the exploration phase, if the states in x follow a
chronological order. Specially, when only local feature-track
measurements are available, as described in [11], the QR
factorization needs to involve only the bottom-right part of
R, which corresponds to recent states. Thus, the cost remains
constant, irrespective of the size of the entire state vector
x. In contrast, during relocalization, this estimator becomes
very inefficient for processing loop-closure measurements,
which involve both recent and past states. In this case, the
size of the submatrix of R involved in the QR factorization
increases significantly, making the cost at least linear in
the size of x. Since this becomes prohibitively expensive,
especially when navigating in large areas, in what follows,
we introduce alternative approximate estimators that reduce
the computational cost, while preserving consistency.

B. Estimators based on the Schmidt Approximation
As mentioned earlier, the Schmidt approximation, which

was introduced originally for the Kalman filter [29], is
consistent. The key idea behind it is to save processing cost
by updating only a subset of the states while leaving the
rest unaltered. In what follows, we discuss its equivalent
in the square-root inverse form, identify its limitations, and
introduce RISE, an efficient alternative to it. We start by
partitioning the state vector x into two parts: x1 and x2.
Now the prior term can be written as

kR(x� x̂)k2
=

�R11 R12

R22

� �
x1 � x̂1

x2 � x̂2

�

2

(5)

Employing the idea of Schmidt, we use the measurements to
update the estimate of x1 to x̂�1 but keep x̂2 the same. By
doing so, the posterior term should become

�R�11 R�12

R22

� �
x1 � x̂�1
x2 � x̂2

�

2

(6)

A property of the Schmidt approximation in this square-
root inverse form is that R22 remains the same, which does
not hold if we change the state order (update x2 but not
x1). For this reason, it is preferable to put the states to be
updated on the upper part of x. In practice, we typically
focus more on recent states than past states, so the states

QR

Fig. 2. Structure of the information factor when applying RISE.
The QR factorization does not involve R22. We drop the cost term∥∥∥H⊕

2 (x2 − x̂2)− e1

∥∥∥2, and combine R22 with R⊕
11 and R⊕

12 to form
the new cost function C̄ for updating x1, while x2 remains unchanged.
Dropping this cost term is the key approximation of RISE. And by ignoring
the information in it, we preserve the sparsity of the Cholesky factor.

must be organized in reverse chronological order in order to
apply the Schmidt approximation. This is in stark contrast to
the preferred state order for the case of the optimal estimator
during exploration. The ramifications of this order switching
will become evident when we discuss them in Sec. IV-V.

Among all Schmidt estimators, the exact Schmidt [29]
yields the optimal solution for x1. Surprisingly (and quite
unfortunately), its exact equivalent in the inverse form, which
we derived in [34], called the inverse Schmidt estimator
(ISE), has no speed advantage over the optimal estimator,
and causes fill-ins when applied to SLAM. For this reason,
in this work we introduce an approximation to ISE, which
has lower cost, the resource-aware inverse Schmidt estimator
(RISE). This can be derived following the outline in [34] by
setting R22 to infinity in the steps of ISE, and is summarized
hereafter. First, we rewrite the cost function in (2) as

C =

�R11 R12

H1 H2

� �
x1 � x̂1

x2 � x̂2

�
�
�
0
r

�

2

+ kR22(x2 � x̂2)k2

=

24R�11 R�12

H�2
R22

35�x1 � x̂1

x2 � x̂2

�
�

24r�1
e1

0

35

2

(7)

where the following QR factorization was performed:�
R11

H1

�
= Q1

�
R�11

0

�
(8)

and �
R�12

H�2

�
, QT

1

�
R12

H2

�
;

�
r�1
e1

�
, QT

1

�
0
r

�
(9)

Next, instead of minimizing C, we drop the cost term x2,
kH�2 (x2 � x̂2)� e1k

2 in (7), and minimize (see Fig. 2):

�C =

�R�11 R�12

R22

� �
x1 � x̂1

x2 � x̂2

�
�
�
r�1
0

�

2

(10)

Finally, we update the estimate of x1 by setting

x̂�1 = arg min
x1

�C = x̂1 + R�11

�1
r�1 (11)

while x̂2 remains unchanged. As a Schmidt estimator, RISE
is consistent since it does not assume any state as per-
fectly known. Instead, it only drops information (the term
kH�2 (x2 � x̂2)� e1k

2), and correctly updates the cross term
R12 between x1 and x2. As compared to ISE, RISE computes
an approximate estimate for x1, whose accuracy loss is

negligible when the estimate of x2 is precise. In the extreme
case, when the uncertainty of x2 goes to zero, RISE results
in the optimal solution for x1 as ISE. For this reason, in
practice, we set x2 to be states with low uncertainty. On
the other hand, RISE is significantly more efficient than
ISE since the cost of the QR factorization is cubic in the
size of x1 (instead of x), and introduces no extra fill-ins,
thus keeping R sparse (see the accompanying video for
this sparsity in a SLAM simulation). If we select x1 to
contain a small number of states (e.g., a window of recent
camera poses and features), the cost is O(1) in the size of
x. Although the column size of R�12 is the same as the size
of x2 and can be comparable to that of x, it is sparse in the
context of SLAM. As a result, computing R�12 is also O(1).

A key advantage of RISE is that it can trade accuracy
for speed by adjusting the size of x1. Specifically, during
relocalization, we can set x1 = x to obtain an accurate global
adjustment if it is the first loop-closure event, or we can use
RISE with a small-size x1 for an approximate but efficient
solution. Furthermore, this global adjustment can be split into
two steps, where we first employ RISE with a small sized x1,
and then we optimize over x2, which can run independently
in the backend. Through this process, detailed in Sec. V, the
frontend maintains its real-time localization capability, while
the backend allows taking advantage of loop-closure events
after long periods of exploration.

Note also that the optimal estimator for exploration in
Sec. III-A can be considered as a special case of RISE, with
x1 = x and a chronological state order. As it will become
evident hereafter, by applying RISE, with different state or-
ders/sizes of x1, in the two phases of SLAM, we can achieve
real-time performance while maintaining consistency.

IV. RISE-SLAM: EXPLORATION

In this section, we describe how RISE-SLAM processes
local feature tracks (see 1
 in Fig. 1) during exploration. We
start with the first exploration (Sec. IV-A), and then discuss
the general case, where the system has just switched back to
exploration from relocalization (Sec. IV-B and IV-C).

A. First Exploration
During the first exploration, we realize the efficiency of

the optimal estimator (Sec. III-A) by organizing the states
in chronological order [11]. Moreover, we apply RISE with
x1 = x, which is equivalent to the optimal estimator. Denote
the state vector as

�
xT

E1 xT
E2

�T
, where xE2 comprises a

sliding window of recent states involved in the local feature-
track measurements, while xE1 contains all other (previous)
states. The cost function to minimize is (see Fig. 3)

CE =

�RE11 RE12

RE22

� �
xE1 � x̂E1

xE2 � x̂E2

�

2

+ kHE2(xE2 � x̂E2)� rEk2 (12)

where the first term is the prior from the previous time
step, while the second term corresponds to the new (IMU
or feature) measurements. Then, the optimal solution is

x̂�E2 = x̂E2 + R�E22

�1
r�E (13)

x̂�E1 = x̂E1 �R�1
E11RE12R�E22

�1
r�E (14)

QR

Fig. 3. Structure of exploration cost terms before and after an update.
FE does not exist in Sec. IV-A, while in Sec. IV-C, it contains the cross
information between the new and the old map, where the dense columns
on the left correspond to some last states of the old map.

which results from rewriting (12) as

CE =

�RE11 RE12

R�E22

� �
xE1 � x̂�E1

xE2 � x̂�E2

�

2

+ keEk2 (15)

where R�E22 is computed by the following QR factorization:�
RE22

HE2

�
= QE

�
R�E22

0

�
;

�
r�E
eE

�
= QT

E

�
0
rE

�
(16)

The impact of this QR factorization on the terms appearing
in the cost functions in (12)-(15) is depicted in Fig. 3. These
steps are actually analogous to those described in [11], and
similarly, the computational complexity is constant and only
depends on the size of xE2. As compared to [11], we improve
speed during exploration by limiting both the number of
features processed at every step and the feature tracks’ length
(since longer tracks offer more accuracy yet diminishing
returns, while increasing the processing cost cubically) based
on a preselected size of xE2.

B. Transition from Relocalization to Exploration

Consider the case when the system is in the relocalization
mode (Sec. V) and is about to switch to the exploration
mode (i.e., it receives no more loop-closure measurements)
(see 6
 in Fig. 1). Due to the opposite state orderings
used in these two modes respectively (Sec. III-B), we first
need to change the order of the recent states from reverse
chronological, as required in relocalization (Sec. V), to
chronological, as for exploration (Sec. IV-A). Specifically,
we divide the state vector in relocalization into two parts:�
x0TN x0TM

�T
(the superscript 0 denotes reverse chronological

order), where x0N contains the recent states where no loop-
closure measurements are received. Then, we change the
state order of x0N to chronological, by xN , PN x0N (PN

is a permutation matrix). Subsequently, we perform a QR
factorization to make the permuted Cholesky factor upper-
triangular again, which is of constant cost (see [35] for
details) regardless of the size of x0M . After these operations,
the cost function has the form

CN =

�RN11 RN12

� �xN � x̂N

x0M � x̂0M

�

2

+ CM (17)

where CM = kRM (x0M � x̂0M)k2. Note that the states in x0M
are considered as an old map, which we do not update during
the new exploration, so CM will not be used in Sec. IV-C.

After this transition step, a new map (comprising new
camera poses and features) begins with xN , while RN11 rep-
resents its information factor and RN12 the cross information
between the two maps.

C. Exploration: General Case

In general, when in exploration mode, past map’s states
(from previous exploration and relocalization phases) do not
need to be updated. Thus, we apply RISE with x2 = x0M
being the past map’s states, while x1 = xN comprises the
new map’s states which expand as the current exploration
goes on. Specifically, the same operations as for the first
exploration (Sec. IV-A) are applied to the new map’s states.
Additionally, as explained in Sec. III-B, the RISE applies
the QR transformation in (16) on the cross information
term FE (originally starts as RN12 in (17) and evolves
with time), as shown in Fig. 3, and drops the cost term
kF�E3 (x0M � x̂0M)� eEk

2 involving only the old map’s states
(see [35] for a detailed derivation). Note that only the
lower of part of FE , FE2, which has a bounded number
of dense columns, needs updating. Thus, the computational
complexity for the general case of exploration with RISE is
also constant.

V. RISE-SLAM: RELOCALIZATION

We now consider the case, where the system switches from
exploration to relocalization mode so as to use loop-closure
measurements for global pose and map correction.

A. Transition from Exploration to Relocalization

Before entering relocalization, we need to switch the state
order from chronological to reverse chronological. Specif-
ically, during exploration, the state vector is in the form�
xT

L x0TM

�T
, where xL comprises all states in the current

map, while x0M corresponds to the old map [see (17) and
Sec. IV-C]. We first change the state order of xL to reverse
chronological by defining x0L , PLxL (PL is a permutation
matrix). Then, we split x0L into two parts: x0L1 comprises
the recent states to be maintained in the frontend, while the
remaining states x0L2 are combined with the old map x0M so
as to be optimized by the backend (x0B ,

�
x0TL2 x0TM

�T
).

Accordingly, in terms of cost functions, we first combine all
available cost terms so far, including the current exploration
(Fig. 3) and the old map CM from (17) [first term in (18)], and
the new loop-closure measurements [second term in (18)], to
get the total cost CT . Then, we employ the QR factorization
of RISE [see (7)-(9)] to split CT into two parts:

CT =

�RT 11 RT 12

RT 22

� �
x0L1 � x̂0L1

x0B � x̂0B

�

2

+ kHT 1(x0L1 � x̂0L1) + HT 2(x0B � x̂0B)� rTk
2 (18)

=

24R�T 11 R�T 12

RT 22

H�T 2

35�x0L1 � x̂0L1

x0B � x̂0B

�
�

24r�T
0
eT

35

2

= CF + CB

(19)

where

CF ,

R�T 11(x0L1 � x̂0�L1) + R�T 12(x0B � x̂0B)

2
(20)

x̂0�L1 , x̂0L1 + R��1
T 11 r�T (21)

CB ,

�RT 22

H�T 2

�
(x0B � x̂0B)�

�
0
eT

�

2

(22)

