
Decentralized Visual-Inertial Localization and Mapping
on Mobile Devices for Augmented Reality

Kourosh Sartipi, Ryan C. DuToit, Christopher B. Cobar, and Stergios I. Roumeliotis†

Abstract— In this paper, we present a novel approach to
shared augmented reality (AR) for mobile devices operating in
the same area that does not rely on cloud computing. In par-
ticular, each user’s device processes the visual and inertial data
received from its sensors and almost immediately broadcasts
a partial feature map of its surroundings. In parallel, every
device localizes against the broadcasted maps by employing
feature observations to determine its 4-DOF transformation to
each of the gravity-aligned maps. By doing so, virtual content
placed by any of the users is quickly and accurately displayed
in all other users’ views. Furthermore, to reduce the effect of
inconsistency introduced by relocalizing against incrementally
created and updated maps, their transformations w.r.t. the
device are modeled as random processes driven by white noise
instead of constant, unknown parameters. Lastly, we assess the
accuracy of our approach for the case of two users in a room-
scale environment against VICON ground-truth.

I. INTRODUCTION

With the increasing availability and capability of mobile
devices, numerous methods employing online simultaneous
localization and mapping (SLAM) to estimate a device’s
3D pose (position and orientation) in real-time have been
developed [1], [2], [3], [4], [5]. Extending this capability,
however, to multiple mobile devices in augmented reality
(AR) applications, where the users place virtual objects in
the environment (e.g., see Fig. 1), is not trivial. Specifically,
shared AR use-cases (e.g., games, collaborative design, and
education) require to precisely estimate, in real time, the pose
of each device as well as the location of all virtual objects
regardless of the frame against which each of them was
anchored. In particular, all virtual objects are placed w.r.t.
the “owner’s” frame of reference (i.e., the frame of the user
placing the object). Thus, for the objects to be shared across
multiple users, the transformations between their frames need
to be determined. This can be achieved in a number of ways.

In particular, Lynen et al. [6] and Oleynikova et al. [7],
first create an offline map of the area of interest w.r.t. a
single frame which then the users employ to localize against.
Although creating a map offline to be shared in advance has
certain advantages (e.g., high accuracy), it causes delays,
burdens the users with additional effort, is not resilient
to changes (e.g., lighting conditions) and offers no way
for updating or expanding their map after the start of the
operation. Note that ARKit [8] and HoloLense [9] that
compute the shared map on device, as well as ARCore [10]
that relies on cloud computing share the same drawbacks of

†Kourosh Sartipi, Ryan C. Dutoit, Christopher B. Cobar, and
Stergios I. Roumeliotis were with Google, CA 94043 at the time of
submission sarti009@umn.edu, rdutoit@google.com,
cobar001@umn.edu, stergios@umn.edu.

Fig. 1. Screen captures from two mobile phones in a shared AR experience.
The red R2D2 is placed by the first user (left), while the blue R2D2 is
placed by second user (right). Both devices, though, view them as if they
are sharing the same physical space.

[6] and [7].1 Another class of approaches employ powerful
servers or cloud infrastructure to process data received from
all users, to compute and broadcast a unified map [11], [12],
[13], [14], [15], [16]. Cloud computing, however, may not
always be available and raises privacy concerns.

In the context of cooperative SLAM, Cunningham et al.
introduced in [17], and later improved upon in [18], a de-
centralized data fusion smoothing and mapping (DDF-SAM)
approach to enable consistent2 localization against features
where each device marginalizes all its other states and
broadcasts the resulting dense factor and feature estimates.
To reduce DDF-SAM’s computational cost from quadratic to
linear in the number of features, Paull et al. [20] presented
a consistent marginalization scheme, where an approximate
factor with a predetermined structure is computed to achieve
communication cost linear in the number of features. The
necessary computations, however, are often prohibitive for
use in mobile devices, as they involve inversion and eigen-
decomposition of the dense marginalized feature Hessian
matrix. Alternatively, approaches such as [21], [22], [23],
distribute the computations of the multi-user optimization
problem across all devices. They require, however, commu-
nication synchronization to send the necessary data to other
devices at each step of their distributed optimization process.
Furthermore, they compute the optimal device poses and
therefore incur extra processing because of the large number
of states involved.

Approaches that separate SLAM to a fast Localization
Frontend and a slower, but more accurate Mapping Backend
(e.g., PTAM [24]) are more suitable for mobile processors.
In particular, Schuster et al. [25] propose an approach com-
prising a fast Frontend, which creates keyframes and local
maps, and a Backend that employs pose-graph optimization

1Recently ARKit introduced an update that allows users to continuously
share maps. The details of their approach, however, is not publicly available.

2A state estimator is consistent if the estimation errors are zero mean and
have covariance equal to the one calculated by the filter [19].

for processing inter and intra-device measurements. These
two components, however, are decoupled as the Frontend
does not localize against the Backend’s map, making it
susceptible to drift. Alternatively, Zhang et al. [26] extend
ORB-SLAM [27] to multiple devices where each user shares
all keyframes and corresponding feature measurements with
every other user, and all the data from all devices are
processed to create a single pose graph representing the
entire system on every device. Similarly, in [28], the devices
involved in inter-device loop-closure continuously broadcast
all their keyframes and maps, and then perform independent
map merging operations. Both [26] and [28], however, im-
pose a significant communication and computational burden
as all keyframes and measurements are shared and processed
by each device independently.

In our work, to ensure real-time operation, we introduce
a decentralized SLAM system, consisting of, per device:
i) A fast Localization Frontend (based on a sliding-window
filter [2]) and, ii) An incremental Mapping Backend [29]
(see Fig. 2). Specifically, each user’s Frontend estimates the
host device’s pose independently and performs map-based
updates (corrections) using all available maps, created by
the host device’s Backend or transmitted from other users. In
parallel, and as soon as this is available, each user’s Backend
incrementally broadcasts information about a subset of its
processed features (3D position, approximate covariance, and
a summarization of its visual descriptors). By doing so,
each device has (almost) immediate access to a collection of
users’ maps, which are employed for reducing drift, and more
importantly, for estimating the transformations between the
users’ and the maps’ frames. Once these estimates become
available, the system can compute the poses of all virtual
objects w.r.t. all device’s frames.

Key to our system are the state updates against uncertain
maps, computed incrementally online. Similar to previous
approaches (e.g., [6], [30], [27]) and in order to reduce
processing requirements, we assume that the mapped fea-
tures’ positions are perfectly known. This approximation,
however, leads to inconsistency3 which we partially remedy
by increasing the assumed noise covariance of the mapped
feature observations. In our case, this inconsistency is further
exacerbated by the fact that the maps are evolving, i.e., both
expanding and improving. That is, the assumed perfectly
known feature positions change between consecutive map
broadcasts as more visual observations become available
and are processed by the Backend to improve each map’s
accuracy. Note that this is a distinguishing characteristic of
our system, where in order to minimize the time for starting a
shared AR experience, we choose to almost immediately start
sharing incomplete, and often inaccurate maps. To reduce the
impact of this new type of inconsistency, without increasing
processing, in this work we model the transformations be-
tween the users and the maps as random processes driven
by white noise. This modeling choice allows the system to
compensate for errors incurred due to inconsistency over

3To the best of our knowledge, the only approach that consistently uses
previously computed maps is that of [31]. Its processing requirements,
however, prevent us from employing it in the case of multiple users.

time, resulting in higher accuracy. In summary, the main
contributions and key findings of this paper are:
• To the best of our knowledge, we present the first

decentralized 3D SLAM system for mobile devices that
does not require a cloud infrastructure and where the
users can immediately start a shared AR experience,
provided they observe the same scene. The commu-
nication cost of our algorithm is linear per user in
the number of users. On the other hand, map-based
updates of the Frontend for determining the user-to-map
transformations, have complexity cubic in the number
of users.4

• We introduce a novel method for reducing the effect of
inconsistency caused by performing map-based updates
against incrementally built, inaccurate maps, and verify
the improvements in accuracy experimentally.

In what follows, we first provide an overview of the shared
AR system in Sect. II, and describe its components in detail
in Sect. III. We then experimentally evaluate our algorithm
in Sect. IV and provide concluding remarks in Sect. V.

II. SYSTEM OVERVIEW

Consider multiple mobile devices operating in the same
area and communicating through a network connection
(e.g., via WiFi). Each device processes its own measure-
ments, and places virtual objects in the environment anchored
to its own frame of reference. The objective of this work
is to design a system that accurately estimates, in real-
time, the location of all virtual objects w.r.t. all users,
regardless of which frame of reference they were originally
anchored to. Without loss of generality, we consider the case
of two users whose devices run the same processes (see
Fig. 2). Specifically, our algorithm comprises the following
components:

1) Mapping Backend (Sect. III-A): At the core of the
Backend is an approximate, incremental, batch least-
squares (BLS) estimator that periodically processes the
available inertial and image measurements (both consec-
utive feature tracks and loop closures) to incrementally
create a 3D map. Every time a partial map is com-
puted, information from it (3D feature positions along
with their approximate covariance and corresponding
descriptors) are provided to the host’s relocalization
module and broadcast to the other user (Sect. III-A.1).

2) Relocalizer (Sect. III-B): This comprises a set of Re-
localizers, one per map, each of which seeks to find
correspondences between the features extracted in the
host’s current image and those found in a user’s map.

3) Localization Frontend (Sect. III-C): The Frontend’s
purpose is to produce accurate, frequent (10 Hz), and
low-latency estimates of the device’s pose. At its core is
the inverse square root filter [2], which processes inertial
measurements and consecutive image 2D feature tracks
over a fixed-size sliding window of keyframes, thus
maintaining real-time performance. Additionally, every

4This cost is negligible as compared to that of incremental mapping,
especially for the case of a few users operate within a room-size area.

Camera Feature extraction
and tracking

Loop-closure &
BLS

Submap
alignment

Filter

Relocalizer 1
(against host map)

Relocalizer 2
(against other map)

AR Visualization

IMU

User 1

Camera Feature extraction
and tracking

Loop-closure &
BLS

Submap
alignment

Filter

Relocalizer 1
(against host map)

Relocalizer 2
(against other map)

AR Visualization

IMU

User 2
(1)
(2)

(3)

(4)

(5)

(6)

(7)
(8)

(2)

(2)

(2)

(1)

(1) (1)

(1) (1)

(3)

(3)

(3) (3)

(3)

(4)

(4)

(4)

(3) (3)

(5)

(6)

(7)
(8)

Fig. 2. Overview of the system running online on the mobile devices of two users. Shaded blue denotes the Mapping Backend (Sect. III-A), orange the
Relocalizer (Sect. III-B), and green the Localization Frontend (Sect. III-C). Note the number of Relocalizers equals the number of users. The numbers on
the arrows correspond to the information delivered: (1) IMU measurements, (2) images, (3) feature tracks, (4) filter state estimates, (5) host user’s feature
position and covariance estimates, (6) other user’s feature position and covariance estimates, (7) 2D-to-3D feature matches against the host user’s map, (8)
2D-to-3D feature matches against the other user’s map.

time the Relocalizer finds correspondences between the
features extracted in the current image and those in one
of the users’ maps, the filter processes these 2D-to-3D
feature matches to reduce its pose drift and improve the
estimate of its transformation w.r.t. the detected map.

III. TECHNICAL APPROACH

Since the communication of each user’s partial map to
other users is of key importance in our approach, we here-
after describe the mapping Backend (Sect. III-A), and then
provide a brief overview of the Relocalizer (Sect. III-B).
Subsequently (Sect. III-C), we present the Frontend and
the process through which 2D-to-3D correspondences are
employed to estimate a user’s pose w.r.t the maps.

We hereafter denote the position and orientation of frame
{F1} in frame {F2} as F2pF1 and F2

F1
C, respectively, where F2

F1
C

denotes the rotation matrix corresponding to the orientation
of frame {F1} in frame {F2}. Additionally, we define I`, for
` = 2,3,4, as the `× ` identity matrix. To preserve clarity,
we assume the IMU and camera are co-located and there is
no time offset between the sensors’ clocks. In practice, both
of the quantities are estimated online [2].

A. Mapping Backend

The Backend employs the IMU and the feature mea-
surements, as well as the camera pose estimates from the
Frontend (see Fig. 2) to incrementally create a 3D map of the
area. To do so, it first employs a bag-of-words approach [32]
to detect loop closures and pass the matches through a 3pt+1
RANSAC [33] for outlier rejection. Then, the feature tracks,
loop-closures, and IMU measurements are processed in the
BLS estimator (see Fig. 2). Specifically, by defining {M1} as
the gravity-aligned user 1’s map frame of reference (i.e., the
z axis of the frame is parallel to the gravity direction),
the pose (position M1pCk+1 and quaternion of orientation
Ck+1
M1

q) and velocity M1vCk+1 of the IMU-camera pair, as
well as the IMU gyroscope bias Ck+1bg and accelerometer
bias Ck+1ba at time step k + 1, form the 16× 1 vector

ξ k+1, which is computed from ξ k by integrating the IMU’s
rotational velocity and linear acceleration measurements uk.
This process is compactly described as

ξ k+1 = φ(ξ k,uk)+n(I)
k (1)

where φ is a nonlinear function corresponding to the IMU
measurement model, and n(I)

k is a zero-mean Gaussian pro-
cess noise with covariance Q(I)

k . Further details on the IMU
measurement model can be found in [34].

The camera observation of feature j located at position
M1 f j from the pose {Ck} is expressed as

Ck z j = π

[
Ck
M1

C(M1 f j−M1pCk)
]
+n(c)

jk (2)

where π represents the camera perspective-projection model
and n(c)

jk is the Gaussian zero-mean measurement noise with

covariance Q(c)
jk .

Computing the optimal BLS estimate of the trajectory
consisting of K camera poses and a map of L features
requires minimizing the following non-linear cost function:

C =
K−1

∑
k=1
||ξ k+1−φ(ξ k,uk)||2Q(I)

k
+

K

∑
k=1

L

∑
j=1

∥∥∥Ck z j−π

[
Ck
M1

C(M1 f j−M1pCk)
]∥∥∥2

Q(c)
jk

(3)

by employing Gauss-Newton iterative optimization. Once the
map is optimized, we prepare for publication (see Sect. III-
A.1) all estimated feature positions M1 f j and their approxi-
mate covariances Pf jf j . The latter are computed, under the
assumption that their observing camera poses are perfectly
known, by inverting the corresponding 3×3 block-diagonal
elements of the Hessian matrix of (3). In order for the
Backend to provide low-latency (typically within 2 sec)
initialization of newly observed features and refinement of
reobserved features, this incremental optimization process is
repeated whenever ten new keyframes are received, which
corresponds to typically a sec of visual and inertial data.

At this point, we should note that minimizing (3) has
computational and memory cost between linear and quadratic
in the number of states, which increases the latency of
estimating the positions of new features as the map grows.
For this reason, to ensure timely map publication, when the
BLS solve time exceeds 6 sec we finalize the map containing
all states currently being optimized in the Backend and start
a new one. Finally, we align all maps corresponding to a user
following the approach of [29] (see local-map alignment in
Fig. 2). We, eventually stop the Backend after processing
2,000 keyframes to prevent ever-increasing memory usage.
Investigating selective keyframing approaches to address this
limitation is part of our future work.

1) Data Transmission to Other Users: Once a new map is
published, it can be immediately employed for relocalization
by the host device, as no communication is required. When
transmitting information to the other users, though, care must
be taken to ensure low communication cost. For instance,
the entire image’s feature descriptors, as well as their pixel
locations and position estimates correspond to approximately
20 KB of data per keyframe per user. Considering the case
of 5 users, this could amount to 1 MB of data per second. In
our system, in order to preserve bandwidth, we selectively
broadcast the features’ descriptors, their 3D positions and
approximate covariances. Specifically, when transmitting we
consider two scenarios: (i) Broadcast a new feature, (ii) Up-
date the information about a previously broadcast feature.
• New features: In this case, we require that the ratio of

the smallest to the largest eigenvalues of the feature’s
covariance matrix is sufficiently large (> 0.01) so as
to ensure the uncertainty is not disproportionately high
in one direction. Additionally, the largest eigenvalue
should be sufficiently small (< 10). These requirements
prevent poor map-based updates caused by features with
high uncertainty. If these criteria are met, the feature’s
3D position, covariance, and descriptors corresponding
to its first observation are broadcast.

• Existing features: Over time, subsequent observations
to a known feature often occur, which supply additional
descriptors and result in improved position estimates. In
order to provide users with up-to-date information, but
still limit the necessary bandwidth, we only broadcast:
(i) Updated position and covariance information when
the feature’s position estimate has changed by more than
3 cm, and (ii) New descriptors with Hamming distance
larger than 40 compared to the previous one.

The aforementioned parameter values are empirically se-
lected to provide a balance of accuracy, initial localization
time, and communication cost. In our experiments, this
strategy results in less than 1 KB of data transmitted per user
per keyframe (i.e., less than 10 KB per user per second).

B. Relocalizer
Each Relocalizer seeks to find 2D-to-3D matches between

features in a user’s current image and a map. In this work,
we have chosen to employ a separate Relocalizer per user
(instead of one Relocalizer for all users’ maps), so as to
be able to process correspondences to each map separately

and in parallel. For instance, Fig. 2 shows that each device
contains two Relocalizers each corresponding to a different
map, where one of them uses mapped features from the host
device, while the other receives the necessary information
(3D feature positions, their approximate covariances, and a
subset of their observed binary descriptors) over the network.

Finding a 2D-to-3D match, i.e., the closest image fea-
ture descriptor to a mapped one, has complexity linear in
the number of features stored in the map, which can be
prohibitive for real-time applications. To reduce this cost,
we employ a hierarchical k-means tree [35] to find the
approximate closest descriptor in the map for each queried
image feature.

Once the image-to-map (2D-to-3D) feature matches are
determined, inliers are then selected through a hamming-
distance ratio test [36], followed by P3P RANSAC [37].
We subsequently apply PnP [38] to compute the camera’s
pose w.r.t. the map’s frame. Lastly, and before we accept
this match, we compare the roll and pitch estimates from
PnP against those computed from the filter’s gravity estimate.
The inlier matches are then provided to the Frontend to be
processed by the filter as described in the next section.

C. Localization Frontend

At each time step k, the Frontend extracts FAST [39]
corners in the current image and tracks them, by matching
their corresponding ORB descriptors [40], to the previous
image (see Fig. 2). To estimate the current pose with low
latency, we employ the square-root inverse filter of [2],
which processes IMU measurements [see (1)] and 2D-to-
2D feature tracks across a sliding window of J poses while
marginalizing the older ones. Specifically, at each time step
k, the filter maintains the following state vector

xk =
[
xT

Ck−J+1
. . . xT

Ck
xT

Ek
xk

τ

T
]T

(4)

where xCi , for i = k− J + 1, . . . ,k, is the camera pose at
time step i, xEk =

[Ck bT
g

Ck bT
a

G1vT
Ck

]T
contains the bias

of the gyroscope, Ck bg, and accelerometer, Ck ba, as well as
the velocity G1vCk at time step k. Finally, the state comprising
the 4-DOF transformations of the filter’s global frame w.r.t.
each of the maps’ frames (i.e., the global-to-map states) is:

xk
τ =

[
τk

1
T

. . . τk
N

T
]T

(5)

with τk
i ,

[
G1θ k

Mi
G1pk

Mi

T
]T

, for i = 1, . . . ,N, where N is

the number of users, and G1θ k
Mi

and G1pk
Mi

are the relative
yaw and position of the map frame {Mi} w.r.t. the filter’s
global frame {G1} at time step k, respectively. Note that all
the filters’ and maps’ frames are gravity aligned, therefore,
we only need to estimate the yaw for their relative attitude.
Furthermore, we should emphasise that there is no system-
wide global frame among all users. Instead, each user defines
its own global frame and estimates the transformation to the
other users’ maps.

1) Global-to-map Transformation Propagation Model:
Estimating the global-to-map states τk

i is achieved through
map-based updates. These, as mentioned earlier, cause the
estimator to be inconsistent, because the mapped features are
treated as known parameters and thus their cross-correlations
with the filter states are ignored. Furthermore, and most
importantly in the context of this work, the mapped features’
position estimates may change over time. Specifically, and
in order to expedite the start of a shared AR experience,
partial and often inaccurate feature maps are broadcast by
the users almost immediately. As more feature observations
are processed by the users’ Backends and re-broadcast to the
Relocalizers, the Frontend repeatedly updates its state using
different feature position estimates. This process exacerbates
the effect of inconsistency and causes the filter to be overly
confident about its global-to-map relative pose estimates.
Eventually, as a result, the filter will start to absorb fewer,
or even consistently reject, corrections offered by subsequent
updates against higher accuracy maps.

To reduce the effects of inconsistency, in this work, we
model each global-to-map-transformation state as a random
process driven by white noise, i.e.,

τ̇ i = η
c
i (6)

where ηc
i is zero-mean white Gaussian noise. The equivalent

discrete-time state propagation equation is

τ
k+1
i = τ

k
i +η i (7)

where τ
k+1
i and τk

i are the global-to-map transformations
of map i at steps k + 1 and k, respectively, and η i is the
discrete-time zero-mean Gaussian noise. The effect of this
model is to increase over time the filter’s uncertainty about
the location of a map, thus reducing its overconfidence about
the positions of the features comprising it. Note that if a
map is not reobserved for a long time, this model will lead
to a very large uncertainty about its transformation w.r.t. the
filter’s global. In such an event, we will consider the map as
“lost” and re-initialize it only when re-discovered.

2) Inflated Camera Measurement Noise Model: Once
the Relocalizer determines the 2D-to-3D feature correspon-
dences to map i, these are provided to the filter (see Fig. 2),
where an approach similar to that of [30], [6] is employed
to process the following measurement:

zi j = π

[
Ck
G1

C
(

G1
Mi

C(G1θ
k
Mi
)Mi f j +

G1pk
Mi
−G1pCk

)]
+ν i j (8)

where zi j are the pixel coordinates of the image measurement
to feature j of map i, Mi f j denotes the 3D position of the
feature, and ν i j is the zero-mean Gaussian noise of the
measurement with covariance σ2I2.

Specifically, the 2D-to-3D matches are processed by lin-
earizing (8), around the camera pose xCk and global-to-
map τk

i estimates, while treating the feature position Mi f j
as perfectly known. To mitigate the effects of inconsistency
arising from this approximation, we employ two more noise-
weighting factors in addition to the measurement noise
covariance σ2I2. Specifically, we inflate the noise first as
dictated by the feature’s approximate covariance, Pf jf j , and

then according to the filter’s covariance, Pxx (originally
adopted by NASA’s Apollo program [41]). Summing these
terms with the pixel noise yields the following measurement
covariance:

Ri j = αHfPf jf j Hf
T +βHxPxxHx

T +σ
2I2 (9)

where Hf, Hx are the Jacobians of the measurement func-
tion (8) with respect to the feature position and the camera
pose, respectively, and α and β are tuning parameters (in
this work we have selected α = 1.0 and β = 0.5, which in
our experiments produced better initial localization accuracy
when two users look at the same scene).

3) Computational Considerations: Note that by including
the global-to-maps transformations xk

τ in the filter’s state
vector, instead of the Backend, we trade a temporary loss
of accuracy, for responsiveness and processing savings. That
is, by not estimating the 4 DOF transformations in the
Backend, we avoid expensive matching between the features
of all the maps, thus resulting in significant processing
savings. Instead, the transformation between a map and a
device’s global frame is determined immediately after the
first successful filter update against that map. This estimate
is then improved as more measurements become available.

The computational cost of the filter is cubic in the size
of the state vector and thus in the number of users, N. We
typically, however, consider a small number of users (N =
2, . . . ,5), hence this part of the state vector corresponds to
a small fraction (8-20 elements) of the entire state (100-
150 elements). Additionally, since the filter maintains the
square root of the information matrix, the memory cost of
maintaining the global-to-map states in the filter is quadratic
in N. Lastly, the communication cost per user is linear in
N, as each user receives the partial maps of other users and
broadcasts its own map.

We finally note that in real-time AR, the Frontend’s
accuracy and latency are significantly more important than
those of the Backend, since the users are immediately able
to observe any errors, or latency, of the Frontend. Hence,
to compute the current pose estimate for rendering virtual
objects, the AR Visualizer (see Fig. 2) extrapolates the latest
filter estimate by integrating IMU measurements.

IV. EXPERIMENTAL RESULTS

In what follows, we first briefly describe our experimental
setup and then present the evaluation results for the proposed
approach. In particular, we start by providing quantitative ev-
idence in support of our proposed global-to-map propagation
model described in Sect. III-C. Subsequently, we present the
results from multiple experiments where two devices collect
data inside a room with different starting pose configurations
and evaluate the accuracy of their estimates against VICON
ground-truth. Note that in a shared AR experience, the virtual
objects are rendered in the user’s current image by employing
the most recent device pose estimate. Hence, the Backend
poses, while affecting the accuracy of the Frontend, are not
directly utilized for computing the virtual objects’ poses
w.r.t. the camera at the current time. Therefore, all results
presented hereafter consider the first available Frontend pose

Dataset σθ = 10−4rad σθ = 10−5rad σθ = 10−6rad
σp = 10−3m σp = 10−4m σp = 10−5m

D3 5.8 4.7 5.4
D4 7.6 7.2 8.0

TABLE I
RMSE ERRORS (CM) OF TWO DATASETS WITH DIFFERENT

GLOBAL-TO-MAP PROPAGATION NOISE VALUES.

Dataset w/o propagation w/ propagation
D1 6.2 6.3
D2 7.7 6.5
D3 4.6 4.4
D4 4.6 4.2

TABLE II
RMSE ERRORS (CM) WITH AND WITHOUT GLOBAL-TO-MAP

TRANSFORMATION PROPAGATION WHEN RELOCALIZING AGAINST THE

MAP OF DATASET D5 CREATED OFFLINE.

estimate (i.e., the filter’s estimate for the most recent image,
computed by processing IMU, visual, and relocalization mea-
surements), and not those from the Backend after refinement.

All six visual and inertial datasets (i.e., D1 −D6) were
collected and evaluated using two Google Pixel phones,
where greyscale images of resolution 640×480 were saved
at 30 Hz, along with consumer-grade, MEMS-based, IMU
data at 200 Hz. The collected datasets are between five to
seven minutes long and correspond to 100-200 m trajectories
inside a room. Specifically, the datasets D1−D3 and D5−D6
are collected by starting at different locations and moving
inside the room so as to visit most areas multiple times with
nominal (D1, D3−D6) or fast (D2) motion profiles. On the
other hand, D4 is collected by focusing on parts of the room
that are typically not covered by the other datasets.

A. Impact of Global-to-Map Transformation Propagation
We start by first assessing the impact of the global-to-map

transformation noise standard deviation (std) on the position
root mean square error (RMSE) of our system on datasets
D3 and D4. As evident from Table I, the RMSE is fairly
insensitive to σθ (yaw noise std) and σp (position noise std)
over a wide range of values.

Next, we evaluate the normalized estimation error squared
(NEES) in Monte-Carlo simulations consisting of 30 trials,
where the device moves on a circle of radius 5 m and
observes 40 features. Fig. 3 depicts the Frontend’s keyframe

Dataset w/o propagation w/ propagation
D1 7.2 6.9
D2 16.7 14.8
D3 6.2 4.7
D4 8.4 7.2
D5 6.6 6.0

TABLE III
RMSE ERRORS (CM) WITH AND WITHOUT GLOBAL-TO-MAP

TRANSFORMATION PROPAGATION WHEN RELOCALIZING AGAINST THE

INCREMENTAL MAP OF THE SAME DATASET.

Fig. 3. Simulation results: Average keyframe position NEES.

position NEES with and without global-to-map transforma-
tion propagation [see (7)]. As evident, the global-to-map
transformation propagation reduces the NEES, and hence,
improves the estimator’s consistency.

Lastly, we evaluate the effect of the proposed global-
to-map transformation propagation when a complete map
of the environment is available beforehand (i.e., the map
does not evolve). In particular, we evaluate the Frontend
running on datasets D1 through D4 while performing map-
based updates against the map of D5 computed offline, with
and without employing global-to-map transformation propa-
gation. The results of Table II show that when the map is
built beforehand, and thus has higher accuracy as compared
to an incrementally built and shared one, transformation
propagation yields only a slight increase in accuracy except
for dataset D1, for which the difference in RMSE errors is
within the ground-truth evaluation error. On the other hand,
when we evaluate our system using datasets D1 through
D5 with a map of the environment that is incrementally
built (i.e., evolving map), the global-to-map transformation
propagation significantly improves accuracy (see Table III).

These findings support our hypothesis that a significant
additional source of inconsistency in map-based updates is
due to employing different feature position estimates across
time while treating the map as perfect. As our results demon-
strate, this can be considerably mitigated by employing the
proposed global-to-map transformation propagation.

B. Decentralized SLAM Evaluation

We hereafter evaluate our proposed algorithm for the case
of two users using combinations of datasets D1−D6 (i.e., 15
dataset pairs in total) on two mobile devices. Note that
alternative approaches such as [15], [23] could be employed
for solving the multi-device localization problem. These
methods, however, focus on finding the optimal trajectories
(and maps) of all devices, thus they are computationally
expensive and not suitable for mobile devices. For this
reason, we do not include them in our evaluations.

As mentioned earlier, a key requirement for shared AR
is that each user can localize accurately w.r.t. the other
user’s map. To evaluate this, in Fig. 4 we present the box-
and-whisker plot of the RMSE w.r.t. the user’s own map
(host) and the RMSE w.r.t. the other user’s map (others).
Specifically, consider the following two position estimates
w.r.t. {M1} (i.e., the host map) and {M2} (i.e., the other
user’s map) for user i at time-step k:

M1p(i)
Ck

= M1
Gi

C
(

M1θ
k
Gi

)
Gip(i)

Ck
+M1pk

Gi
(10)

M2p(i)
Ck

= M2
Gi

C
(

M2θ
k
Gi

)
Gip(i)

Ck
+M2pk

Gi
(11)

where Gip(i)
Ck

is the Frontend estimated position of user i at
time step k w.r.t. its own global frame, M j θ k

Gi
and M j pk

Gi
are the yaw and position, respectively, of the global-to-map
transformation of user i w.r.t. map {M j}, and M1p(i)

Ck
and

M2p(i)
Ck

are the positions of user i w.r.t. {M1} and {M2},
respectively. The RMSE of each user’s trajectory w.r.t. each
map [see (10), (11)] assesses the ability of the system to
accurately render virtual content placed by either user.5 Ad-
ditionally, Fig. 5 shows the number of feature measurements
involved in the map-based updates against the host and the
other user’s maps.

First, we note that the accuracy of the Frontend depends on
the motion difficulty, as fast motions result in short feature
tracks and inaccurate maps (e.g., see dataset D2 in Fig. 4
and Fig. 5). The errors in the global-to-map transformations
also depend on the number of map-based updates as well
as the map’s accuracy. Specifically, the updates are required
not only to compute a reliable global-to-map estimate, but
also to compensate for the pose drift. Hence, in general,
small number of map-based updates results in lower accuracy
(e.g., see dataset D1 in Fig. 4). Furthermore, there are cases
where the RMSE of a user against the other user’s map is
lower than that of the host map, this is due to the fact that the
other user has produced a higher quality map as compared to
the host at the time the map-based updates are applied.6 As
expected, these findings imply that through a decentralized
localization and mapping algorithm as the one described
in this work, a precise map will improve the localization
accuracy of all users viewing it.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach for enabling two or
more users to perform shared augmented reality without the
need for external servers or cloud infrastructure. Specifically,
each user broadcasts their incrementally-built map as soon
as it becomes available, and continuously communicates im-
proved feature position estimates. Additionally, and through

5Note that in addition to RMSE, other factors such as jitter play an
important role in the quality of the AR experience. These issues, however,
are related to the rendering of the virtual objects and can be compensated
for by employing e.g., low-pass filters and patch trackers, in addition to
using the latest camera pose from the Frontend, to reduce the reprojection
errors. Addressing these considerations is outside the scope of this work.

6Due to space limitations, specific values for all trials’ RMSE and number
of map-based updates are included in [42].

Fig. 4. RMSE of each dataset w.r.t. its own map (host map), and the other
user’s map frame for all dataset pairs.

Fig. 5. The number of map-based updates from the user’s own map (host
map) and the other user’s map for all dataset pairs.

map-based updates, the 4-DOF relative transformation be-
tween the users’ global and map frames are determined,
which allows computing the pose of all virtual objects in
all users’ frames. Furthermore, and in order to compensate
for the additional inconsistency caused by the map-based
updates against features whose position estimates change
with time, we model the global-to-map transformations as
random processes driven by noise. Finally, we experimentally
verified the gains in accuracy due to employing this model
and demonstrated the performance of our approach in the
case of two users operating in room-size areas.

As part of our future work, we will investigate strategies
for adjusting the transformation’s propagation uncertainty
based on the user’s and map’s estimated accuracy. Addi-
tionally, we will focus on feature selection methods so as to
reduce the communication and processing cost, thus enabling
long-term mapping on extremely constrained platforms, such
as wearables or embedded devices.

REFERENCES

[1] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman
filter for vision-aided inertial navigation,” in Proc. of the IEEE
International Conference on Robotics and Automation, Rome, Italy,
Apr. 10–14 2007, pp. 3482–3489.

[2] K. J. Wu, A. M. Ahmed, G. A. Georgiou, and S. I. Roumeliotis, “A
square root inverse filter for efficient vision-aided inertial navigation
on mobile devices,” in Proc. of Robotics: Science and Systems, Rome,
Italy, July 12–16 2015.

[3] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual-inertial odometry using nonlinear optimiza-
tion,” International Journal of Robotics Research, vol. 34, no. 6, pp.
314–334, Dec. 2015.

[4] H. Liu, M. Chen, G. Zhang, H. Bao, and Y. Bao, “ICE-BA: Incre-
mental, consistent and efficient bundle adjustment for visual-inertial
SLAM,” in Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, June 18–22 2018, pp. 1974–
1982.

[5] T. Qin, P. Li, and S. Shen, “VINS-Mono: A robust and versa-
tile monocular visual-inertial state estimator,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 1004–1020, Aug 2018.

[6] S. Lynen, T. Sattler, M. Bosse, J. Hesch, M. Pollefeys, and R. Siegwart,
“Get out of my lab: Large-scale, real-time visual-inertial localization,”
in Proc. of Robotics: Science and Systems, Rome, Italy, July 12–16
2015.

[7] H. Oleynikova, M. Burri, S. Lynen, and R. Siegwart, “Real-time
visual-inertial localization for aerial and ground robots,” in Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Hamburg, Germany, Sept. 28 – Oct. 2 2015, pp. 3079–3085.

[8] Apple, “ARKit,” https://developer.apple.com/arkit.
[9] Microsoft, “HoloLens,” https://www.microsoft.com/en-us/hololens.

[10] Google, “ARCore,” https://developers.google.com/ar.
[11] B. Kim, M. Kaess, L. Fletcher, J. Leonard, A. Bachrach, N. Roy,

and S. Teller, “Multiple relative pose graphs for robust cooperative
mapping,” in Proc. of the IEEE International Conference on Robotics
and Automation, Anchorage, Alaska, May 3–8 2010, pp. 3185–3192.

[12] C. Forster, S. Lynen, L. Kneip, and D. Scaramuzza, “Collaborative
monocular SLAM with multiple micro aerial vehicles,” in Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Tokyo, Japan, Nov. 3–7 2013, pp. 3963–3970.

[13] L. Riazuelo, J. Civera, and J. M. Montiel, “C2TAM: A cloud
framework for cooperative tracking and mapping,” Robotics and
Autonomous Systems, vol. 62, no. 4, pp. 401–413, 2014.

[14] J. G. Morrison, D. Gálvez-López, and G. Sibley, “MOARSLAM:
Multiple operator augmented RSLAM,” in Distributed Autonomous
Robotic Systems. Springer Japan, 2016, vol. 112, pp. 119–132.

[15] C. X. Guo, K. Sartipi, R. C. DuToit, G. A. Georgiou, R. Li, J. O’Leary,
E. D. Nerurkar, J. A. Hesch, and S. I. Roumeliotis, “Resource-aware
large-scale cooperative three-dimensional mapping using multiple mo-
bile devices,” IEEE Transactions on Robotics, vol. 34, no. 5, pp. 1349–
1369, Oct. 2018.

[16] M. Karrer, P. Schmuck, and M. Chli, “CVI-SLAM-collaborative
visual-inertial SLAM,” IEEE Robotics and Automation Letters, vol. 3,
no. 4, pp. 2762–2769, Oct. 2018.

[17] A. Cunningham, M. Paluri, and F. Dellaert, “DDF-SAM: Fully dis-
tributed SLAM using constrained factor graphs,” in Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Taipei, Taiwan, Oct. 18–22 2010, pp. 3025–3030.

[18] A. Cunningham, V. Indelman, and F. Dellaert, “DDF-SAM 2.0:
Consistent distributed smoothing and mapping,” in Proc. of the IEEE
International Conference on Robotics and Automation, Karlsruhe,
Germany, May 6–10 2013, pp. 5220–5227.

[19] Y. Bar-Shalom, X. Li, and T. Kirubarajan, Estimation with Applica-
tions to Tracking and Navigation: Theory, Algorithm, and Software.
New York, NY: John Wiley and Sons, 2004.

[20] L. Paull, G. Huang, M. Seto, and J. J. Leonard, “Communication-
constrained multi-AUV cooperative SLAM,” in Proc. of the IEEE
International Conference on Robotics and Automation, Seattle, Wash-
ington, May 26–30 2015, pp. 509–516.

[21] E. D. Nerurkar, S. I. Roumeliotis, and A. Martinelli, “Distributed
maximum a posteriori estimation for multi-robot cooperative local-
ization,” in Proc. of the IEEE International Conference on Robotics
and Automation, Kobe, Japan, May 12–17 2009, pp. 1402–1409.

[22] S. Choudhary, L. Carlone, C. Nieto, J. Rogers, H. I. Christensen, and
F. Dellaert, “Distributed mapping with privacy and communication
constraints: Lightweight algorithms and object-based models,” The

International Journal of Robotics Research, vol. 36, no. 12, pp. 1286–
1311, 2017.

[23] T. Cieslewski, S. Choudhary, and D. Scaramuzza, “Data-efficient
decentralized visual SLAM,” in Proc. of the IEEE International
Conference on Robotics and Automation, Brisbane, Australia, May
21–25 2018, pp. 2466–2473.

[24] G. Klein and D. Murray, “Parallel tracking and mapping for small
AR workspaces,” in 6th IEEE and ACM International Symposium on
Mixed and Augmented Reality, Nara, Japan, Nov. 13–16 2007, pp.
225–234.

[25] M. J. Schuster, C. Brand, H. Hirschmüller, M. Suppa, and M. Beetz,
“Multi-robot 6D graph SLAM connecting decoupled local reference
filters,” in Proc. of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, Hamburg, Germany, Sept. 28 – Oct. 2 2015,
pp. 5093–5100.

[26] H. Zhang, X. Chen, H. Lu, and J. Xiao, “Distributed and collaborative
monocular simultaneous localization and mapping for multi-robot sys-
tems in large-scale environments,” International Journal of Advanced
Robotic Systems, vol. 15, no. 3, June 2018.

[27] R. Mur-Artal, J. Montiel, and J. D. Tardós, “ORB-SLAM: a versatile
and accurate monocular SLAM system,” IEEE Trans. on Robotics,
vol. 31, no. 5, pp. 1147–1163, 2015.

[28] R. Egodagamage and M. Tuceryan, “Distributed monocular visual
SLAM as a basis for a collaborative augmented reality framework,”
Computers & Graphics, vol. 71, pp. 113–123, 2018.

[29] K. Sartipi and S. I. Roumeliotis, “Efficient alignment of visual-inertial
maps,” in Proc. of International Symposium on Experimental Robotics,
Buenos Aires, Argentina, Nov. 5–8 2018.

[30] A. I. Mourikis, N. Trawny, S. I. Roumeliotis, A. E. Johson, A. Ansar,
and L. Matthies, “Vision-aided inertial navigation for spacecraft entry,
descent, and landing,” IEEE Trans. on Robotics, vol. 25, no. 2, pp.
264–280, Apr. 2009.

[31] R. C. Dutoit, J. A. Hesch, E. D. Nerurkar, and S. I. Roumeliotis,
“Consistent map-based 3D localization on mobile devices,” in Proc.
of the IEEE International Conference on Robotics and Automation,
Singapore, Singapore, May 29 – June 3 2017, pp. 6253–6260.

[32] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary
tree,” in Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, New York, NY, June 17 – 22 2006, pp. 2161–2168.

[33] O. Naroditsky, X. S. Zhou, S. I. Roumeliotis, and K. Daniilidis, “Two
efficient solutions for visual odometry using directional correspon-
dence,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 34, no. 4, pp. 818–824, Apr. 2012.

[34] A. B. Chatfield, Fundamentals of High Accuracy Inertial Navigation.
American Institute of Aeronautics and Astronautics, 1997, vol. 174.

[35] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors
with automatic algorithm configuration,” in Proc. of the International
Conference on Computer Vision Theory and Applications, Lisboa,
Portugal, Feb. 5–8 2009, pp. 331–340.

[36] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 60, no. 2, pp.
91–110, Nov. 2004.

[37] T. Ke and S. I. Roumeliotis, “An efficient algebraic solution to the
perspective-three-point problem,” in Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, July 22 – 25
2017, pp. 4618–4626.

[38] V. Lepetit, F. Moreno-Noguer, and P. Fua, “EPnP: An accurate O(n)
solution to the PnP problem,” International Journal of Computer
Vision, vol. 81, no. 2, p. 155, July 2008.

[39] E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” in Proc. of the European Conference on Computer Vision.
Graz, Austria: Springer, May7 – 13 2006, pp. 430–443.

[40] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An effi-
cient alternative to SIFT or SURF,” in Proc. of the IEEE International
Conference on Computer Vision, Barcelona, Spain, Nov. 6–13 2011,
pp. 2564–2571.

[41] D. S. Bayard and P. B. Brugarolas, “An estimation algorithm for
vision-based exploration of small bodies in space,” in Proc. of the
IEEE American Control Conference, Portland, OR, June 8–10 2005,
pp. 4589–4595.

[42] K. Sartipi, R. C. Dutoit, C. B. Cobar, and S. I. Roumeliotis,
“Decentralized visual-inertial localization and mapping on mobile
devices for augmented reality,” Google, Tech. Rep., Aug. 2019.
[Online]. Available: http://mars.cs.umn.edu/tr/decentralizedvi19.pdf

