
Consistent Map-based 3D Localization on Mobile Devices

Ryan C. DuToit†, Joel A. Hesch‡, Esha D. Nerurkar‡, and Stergios I. Roumeliotis†

Abstract— In this paper, we seek to provide consistent, real-
time 3D localization capabilities to mobile devices navigating
within previously mapped areas. To this end, we introduce
the Cholesky-Schmidt-Kalman filter (C-SKF), which explicitly
considers the uncertainty of the prior map, by employing the
sparse Cholesky factor of the map’s Hessian, instead of its dense
covariance–as is the case for the Schmidt-Kalman filter. By
doing so, the C-SKF has memory requirements typically linear
in the size of the map, as opposed to quadratic for storing
the map’s covariance. Moreover, and in order to bound the
processing needs of the C-SKF (between linear and quadratic
in the size of the map), we introduce two relaxations of the C-
SKF algorithm: (i) The sC-SKF, which operates on the Cholesky
factors of independent sub-maps resulting from dividing the
map into overlapping segments. (ii) We formulate an efficient
method for sparsifying the Cholesky factor by selecting and
processing a subset of loop-closure measurements based on
their temporal distribution. Lastly, we assess the processing and
memory requirements of the proposed algorithms, and compare
their positioning accuracy against other inconsistent map-
based localization approaches that employ measurement-noise-
covariance inflation to compensate for the map’s uncertainty.

I. INTRODUCTION

In many applications (e.g., surveillance, manufacturing,

virtual and augmented reality), robots or people need to

accurately localize within a frequently-visited indoor space.

In such cases, the accuracy and efficiency of localization can

be significantly improved by using a map of the area. In

the context of 3D visual-inertial localization, maps computed

beforehand1 have been employed by localization algorithms,

such as the multi-state constraint Kalman filter (MSCKF)

in [3] and [4], and parallel tracking and mapping (PTAM)

in [5] and [6], to improve positioning accuracy based on

visual observations of mapped features. These methods

achieve real-time performance at the expense of consistency.2

Specifically, [5] and [6] are inconsistent not only because

of the assumption of a perfect map but also due to the

approximations invoked by the optimization algorithm used

for localization; thus, they cannot provide a reliable measure

of their positioning uncertainty. On the other hand, [3], which

† R. C. Dutoit and S. I. Roumeliotis are with the Department of Computer
Science, University of Minnesota {dutoit,stergios}@cs.umn.edu

‡ J. A. Hesch and E. D. Nerurkar are with Google Inc. {joelhesch,
eshanerurkar}@google.com

This work was supported by Google, Project Tango.
1Besides batch least squares (BLS), pose-graphs [1] and PTAM [2] have

also been used for reducing the processing cost of map building. Since such
approximations yield inconsistent maps, we do not consider them further in
the context of this work.

2As in [7], we define a consistent estimator as one who’s estimation
errors are zero mean and have covariance matrix smaller or equal to the
one calculated by the filter. For the purposes of this work, we focus on the
covariance requirement.

also assumes that the map is perfect and [4], which ignores

the correlations between the estimated state and the map,

inflate the camera measurement’s noise covariance so as to

reduce the effect of inconsistency: overly confident and often

unreliable estimates. They provide, however, no guarantees

that such approximations will yield consistent estimates.

Moreover, inflating the measurement noise does not alleviate

the inconsistency that arises from ignoring cross-correlations

between the estimated state and the map.

An alternative, approximate method, which explicitly

accounts for the map’s uncertainty and its correlations with

the estimated state, is the Schmidt-Kalman filter (SKF) [8],

[9]. The SKF has processing requirements linear in the map’s

size, as it only needs to update the device’s state, covariance,

and cross-correlation with the map. Although the map’s state

and covariance need not be updated, storing its covariance has

cost quadratic in the number of features. This has been the

main drawback of the SKF, as well as of its variants applied

to simultaneous localization and mapping (SLAM) (e.g., [10],

[11], [12]), which has restricted its use to small areas.

To overcome this limitation, in this work, we introduce the

Cholesky (C)-SKF which has, typically, memory requirements

linear in the map’s size, while providing the same consistency
guarantees as the SKF.3 The key insight behind our approach

is that most current methods employed for constructing large-

scale maps, such as batch least squares (BLS), compute and

use the Cholesky factor of the problem’s Hessian, which is

sparse (the number of non-zero elements typically increase

linearly with the map’s size) instead of the dense covariance

matrix [14]. The C-SKF’s memory savings, however, come

at the cost of increased processing requirements. Specifically,

depending on the structure of the Cholesky factor, the run

time increases between linear and quadratic in the map’s size,

which quickly becomes prohibitive for mobile devices. To

address this limitation, we introduce two consistent relaxations

of the C-SKF with the objective of reducing the map’s size

and sparsifying the map’s Cholesky factor:

Sub-mapping: In the context of SLAM, a popular approach

for reducing the processing cost of a large map is to partition it

into independent sub-maps (e.g., [15], [16]). Motivated by sub-

map SLAM, in this work, we introduce the sub-map (s)C-SKF,

which trades localization accuracy for processing speed by

operating on the Cholesky factors of the partitioned Hessians

resulting from dividing the original map into independent

sub-maps. The sub-maps used throughout this work are

generated from the method of [17] due to its inherent ability

3These consistency properties refer to the SKF’s ability to account for
map-uncertainty and device-map cross correlation. Inconsistency can also
arise from linearization errors; this case is covered in-depth in [7] and the
approach introduced in [13] is employed in this work.

2017 IEEE International Conference on Robotics and Automation (ICRA)
Singapore, May 29 - June 3, 2017

978-1-5090-4633-1/17/$31.00 ©2017 IEEE 6253

to consistently relax the information available from each sub-

map. Note though, that other sub-mapping algorithms could

be used.

Map sparsification: When creating a map with many

loop closures or hovering over the same scene for extended

periods of time, its Hessian (and hence Cholesky factor)

can become prohibitively dense, causing the C-SKF to run

out of computational resources and/or memory. To address

this issue, we seek an efficient method for sparsifying the

map’s Hessian (and thus Cholesky factor) while maintaining

a high-accuracy map. To do so, we first find the optimal (in

the BLS sense) estimate for the map and then, after solving,

we consistently sparsify the map’s Hessian, using the BLS

estimate as the map’s lineraization point. This is in contrast

to existing map-sparsification techniques, in which the map

is sparsified while solving the system, yielding a sub-optimal

(in the BLS sense) solution (but achieving faster solve times).

Specifically, several methods focus on limiting the map’s

size by marginalizing states, then sparsifying dense constraints

introduced during marginalization. These include those which

rely on variants of Chow-Liu trees to provide either a

consistent [18] or inconsistent ([19], [20], [21]) sparse ap-

proximation of the information in the marginalization clique;

and [22], which altogether drops some of the marginalization-

induced constraints. Others optimize over the map’s Hessian

([23], [24] with an �1 regularization term and [25] which

constrains pre-selected Hessian elements to be zero) to enforce

sparsity with consistency constraints, while minimizing the

difference from the original system. Finally, [26] provides

a convex-optimization based method to select and discard

measurements from the system with the goal of minimizing

the resulting solution’s deviation from the solution found

when employing all measurements.

While the consistent methods listed above ([18], [22], [23],

[25], [26], [24]) could be modified to sparsify the map after
solving, we instead introduce an alternative approach that

does not marginalize states (as in [18], [22], and [24]) or have

restrictive computational cost for large or highly-connected

maps (which is the case for [23], [25], and [26]). The

proposed heuristic allows us to reduce the Cholesky fill-ins

by efficiently selecting only a subset of the available

loop-closure measurements for Cholesky construction.

Sub-mapping and sparsification allow us to employ maps of

large areas for consistent localization on resource-constrained

mobile devices, such as cell phones and tablets in real time.

In summary, the main contributions of this paper are:

• We introduce the Cholesky-Schmidt-Kalman filter (C-SKF),

which employs the Hessian’s Cholesky factor to compactly

represent the map’s uncertainty, and efficiently compute

consistent map-based updates.

• We present the sub-map (s)C-SKF, a relaxation of the C-

SKF, which employs multiple, independent sub-maps of the

area of interest to support real-time consistent map-based

localization on mobile devices.

• We employ a sparsified Cholesky factor of the (sub-)map’s

Hessian (without modifying the map estimate) so as to

reduce the computational requirements of the (s)C-SKF

when processing observations to (sub-)maps with excessive

loop-closures and/or prolonged hovering.

• We validate the accuracy and consistency of our methods

using visual and inertial measurements from mobile devices

against VICON ground truth.

In what follows, we provide an overview of our map-based

localization system (Sect. II) and then present the system

state and measurement models (Sect. III). In Sect. IV, we

describe the limitations of the SKF when applied to map-

based localization, and then introduce the C-SKF and the

sC-SKF. Our method for sparsifying pre-existing (sub-)maps

is presented in Sect. V. Lastly, we experimentally validate

the proposed algorithms in Sect. VI and provide concluding

remarks with a discussion on future work in Sect. VII.

II. MAP-BASED LOCALIZATION ALGORITHM OVERVIEW

Our objective is to design a consistent estimator for

computing the 3D pose (position and attitude) of a mobile

device in real time, using inertial and visual measurements,

as well as a prior map of the area of operation. To do so, we

require the following information from the (offline) mapping

process:

• The (sub-)map’s estimated state (i.e., point features and

camera poses w.r.t. which they are expressed).4

• The Cholesky factor of the (sub-)map’s Hessian.

• Binary feature descriptors (in our implementation

FREAKs [27]) and the vectors of their corresponding

images indexed by a vocabulary tree (VT) [28].

The first two are necessary for representing the map and its

uncertainty, respectively, while the last is used for recognizing

mapped features. Given this information, we hereafter provide

an overview of our online map-based localization system:

At the core of our estimator is the MSCKF ([3], [29]) which

processes inertial measurements for propagating the device’s

state and covariance estimates. When feature tracks (e.g.,

Harris corners [30] tracked by KLT [31]) become available,

the proposed (s)C-SKF adaptation of the MSCKF consistently

updates the device’s state-covariance and correlations with the

map, but not the map itself (Sect. IV-C). Similarly, each time

the 2D-to-3D feature-matching pipeline (detailed in [32])

identifies correspondences between the features extracted in

the current image and those found in the map, the (s)C-SKF

uses this information to update all estimated quantities except

the map’s state and Cholesky factor (Sect. IV-D – IV-F).

III. SYSTEM STATE AND MEASUREMENT MODELS

A. Device State

At time-step k, the estimated state is:5

xk =
[
xT

E xT
Ck−1

. . . xT
Ck−N

xT
τ

]T
(1)

where xE is the evolving state of the device:

xE =
[Ik qT

G bT
gk

GvT
Ik bT

ak
GpT

Ik

]T
(2)

4Note that we use the inverse-depth parameterization w.r.t. the first camera
observing a particular point feature.

5To simplify the ensuing derivations, we assume the camera and IMU are
time synchronized and co-located. In practice, we estimate their extrinsics
and time offset following the approaches of [33] and [29], respectively.

6254

Ik qG is the quaternion representation of the global, {G},
frame’s orientation in the IMU’s current frame, {Ik}, bak and

bgk are the accelerometer and gyroscope biases, respectively,

and GvIk and GpIk are the velocity and position of {Ik} in {G}.
In (1), xCi =

[IiqT
G

GpT
Ii

]T
, i = k−N, . . . ,k−1 corresponds

to previous IMU poses. Following [3], we maintain a sliding

window of N such poses so as to process measurements to

non-mapped (or local) features without incorporating them

into the state vector.

Finally, our problem formulation requires estimating the 4

degree of freedom (d.o.f.) transformation between the device’s

global frame, {G}, and one or more map’s frames of reference,

{Mi}, all of which are gravity aligned:

xτ =
[
xT

τ1
xT

τ2
. . . xT

τL

]T
, xτi =

[MiφG
GpT

Mi

]T
(3)

where GpMi is the position of {Mi} in {G}, and MiφG is the

rotation about gravity between the two frames. Note that since

the roll and pitch angles are observable for any vision-aided

inertial navigation system (VINS) [13], we choose the z-axis

to align with gravity for all frames involved.

B. Measurement models

1) IMU measurement model: Following [3], we propagate

the state estimate of the device [see (1)] by integrating the

IMU’s rotational velocity and linear acceleration measure-

ments, uk,

xk+1 = g(xk,uk)+wk (4)

where g is a nonlinear function corresponding to the IMU

measurement model and wk is zero-mean, Gaussian noise of

known covariance, Q [34].

2) Local-feature measurement model: As the device tra-

verses its environment, it observes and tracks point features

that have not been mapped. These local features are used

to provide measurement constraints between the N +1 IMU-

camera poses maintained in the state vector. The corre-

sponding non-linear and linearized measurement models (for

simplicity, without time indices) are:

z = h(x,p f)+n , r = HRx̃R +H f p̃ f +n (5)

where z is the measurement, h is the perspective-projection

camera measurement model, r is the linearized measurement

residual, xR (x̃R) is the device state (error-state), p f (p̃ f)

is the local feature state (error-state), HR and H f are the

measurement Jacobians corresponding to the device and

feature states, respectively, and n is zero-mean, Gaussian

noise with known covariance, R.

As in [3], we marginalize the local feature by projecting r
on the left null space of H f , U:

ro = Ho
Rx̃R +no (6)

where:

ro � UT r , Ho
R � UT HR , no � UT n

The new measurement residual, ro, and Jacobian, Ho
R, are

then (Sect. IV-C.2) used for updating the device state estimate.

3) Mapped-feature measurement model: When a

previously-mapped point-feature, f , (expressed w.r.t. the

,
,, { } { }

{ } { }
Fig. 1. Mapped-feature observation: The dotted line is a bearing
measurement, solid lines correspond to quantities estimated online. Dashed
lines correspond to variables determined during mapping offline.

IMU-camera frame, {IMi
λ }, that first observed it during

mapping) is detected by the device, the following geometric

relation holds (see Fig. 1):

Ik p f =
Ik
G C

(
GpMi −G pIk +

G
Mi

C
[

Mip
I
Mi
λ
+Mi

I
Mi
λ

C I
Mi
λ p f

])
(7)

where all rotation matrices, C, are parameterized by their

corresponding quaternions, except G
Mi

C, which corresponds

to a rotation about gravity by an angle MiφG. Applying the

camera perspective-projection transformation, πππ , leads to the

following measurement model:

zmap = πππ
(Ik p f

)
+n = hmap(xk,

I
Mi
λ p f)+n (8)

where n is zero-mean, Gaussian noise with covariance R.

To simplify the notation, from here on, we denote the

state xk in (1) by xR, while we use xM to represent the

vector comprising all mapped features and corresponding

IMU-camera poses. Linearizing (8) yields:

r = HRx̃R +HM x̃M +n (9)

where HR and HM are the device and map Jacobians,

respectively. Note that both HR and HM are sparse, as the

measurement equation only involves the pose of the current

and mapped IMU-camera pairs, the 4 d.o.f. map-to-global

transformation, and the feature’s position.

IV. ALGORITHM DESCRIPTION

In what follows, we first review the SKF, and then introduce

the C-SKF and sC-SKF. To simplify notation, we denote

updated and propagated quantities with + and - , respectively,

rather than using time subscripts. [i.e., Pk+1|k+1 = f(Pk+1|k) is

expressed as P + = f(P), and Pk+1|k = g(Pk|k) is P - = g(P)]

A. Background: Schmidt-Kalman filter

Consider the current propagated system covariance, P, and

Jacobian, H, to be partitioned as:

P =

[
PRR PRM
PMR PMM

]
H =

[
HR HM

]
(10)

The state and covariance update equations for the extended

Kalman filter (EKF) are:

x̂ + = x̂+Kr (11)

P + = (I−KH)P
(
I−HT KT)+KRKT (12)

6255

where

r = z−h(x̂), S = HPHT +R

K = PHT S−1 =

[
PRRHT

R +PRMHT
M

PMRHT
R +PMMHT

M

]
S−1 =

[
K̄R
K̄M

]
S−1

(13)

As shown in [9], the SKF updates only part of state by zeroing

the Kalman gain associated with the state elements whose

estimates are to remain the same (in our case the map, xM):

KSKF =
[
(K̄RS−1)T 0

]T
(14)

Substituting (14) in (11) yields the following state update:

x̂ +

R = x̂R + K̄RS−1r x̂ +

M = x̂M (15)

Additionally, by employing (14) in (12), we arrive at the

SKF’s covariance update:

P +

SKF = P−
[

K̄RS−1K̄T
R K̄RS−1K̄T

M
K̄MS−1K̄T

R 0

]
(16)

Note that if we express the updated covariance of the

EKF as a function of the SKF updated covariance, it is

straightforward to show the SKF is consistent:

P +

EKF = P +

SKF −
[
0 K̄T

M
]T S−1

[
0 K̄T

M
]� P +

SKF (17)

since
[
0 K̄T

M
]T S−1

[
0 K̄T

M
]

is positive semi-definite.

Furthermore, as evident from (16), the cost of an SKF

update is linear in the size of the map, as only the device’s

state, covariance, and cross-correlation terms need to be

updated, while H in (10) is sparse. On the other hand, the SKF

requires storing the covariance of the map, PMM , which is

dense. To better appreciate the challenge this poses on mobile

devices, we note that the covariance of a map generated from

3.5 min of visual and inertial data requires over 2 GB of

storage space. Instead, the sparse Cholesky factor of the cor-

responding Hessian matrix requires only 107.3 MB, and after

sparsification (Sect. V) can be further reduced to 50.4 MB.

This motivates us to introduce the Cholesky-SKF (C-SKF)

that provides the same consistency guarantees as the SKF [see

(17)] while significantly reducing the memory requirements.

B. C-SKF device-map initialization

We start by describing the process for estimating the

4 d.o.f. transformation between the map’s frame and the

device’s global reference frame, as well as its covariance and

correlations with all estimated quantities.

Specifically, consider the first time the mobile device

observes two or more previously-mapped features. An initial

estimate, x̂τ , for the 4 d.o.f. transformation is obtained

by employing the 2+1 pt RANSAC [35]. Furthermore, we

partition the current state as

x =
[
xT

R′ xT
τ xT

M
]T

(18)

where xR′ comprises of the remaining elements of the device’s

state vector [see (1)], and the corresponding covariance as

P =

⎡
⎣PR′R′ 0 0

0 Pττ 0
0 0 (GGT)−1

⎤
⎦ ,Pττ = lim

μ→∞
(μI4) (19)

where Pττ is the covariance of the unknown 4 d.o.f. transfor-

mation, GGT is the Hessian of the map, and G is its Cholesky

factor. After linearizing the measurement model in (8) and

denoting the corresponding Jacobian as

H = [HR′ Hτ HM] (20)

we employ (13)-(15) to update the estimates of x:

x̂ +

R′ = x̂R′ +PR′R′HT
R′S

−1r (21)

x̂ +

τ = x̂τ +(HT
τ A−1Hτ)

−1HT
τ A−1r (22)

x̂ +

M = x̂M (23)

Additionally, employing (16), it can be shown that the updated

SKF covariance is

P =

⎡
⎢⎣

P +

R′R′ P +

R′τ P +

R′M
P + T

R′τ P +

ττ P +

τM

P + T
R′M P + T

τM (GGT)−1

⎤
⎥⎦=

[
P +

RR P +

RM
P +

MR (GGT)−1

]
(24)

where

P +

R′R′ = PR′R′ −PR′R′HT
R′S

−1HR′PR′R′

P +

R′τ =−PR′R′HT
R′A

−1Hτ(HT
τ A−1Hτ)

−1

P +

ττ = (HT
τ AHτ)

−1

P +

RM =

[
P +

R′M
P +

τM

]
=

[−PR′R′HT
R′S

−1J
(HT

τ A−1Hτ)
−1HT

τ A−1J

]
G−1

= ΓΓΓG−1 (25)

and

S−1 = A−1−A−1Hτ(HT
τ A−1Hτ)

−1HT
τ A−1

A = HR′PR′R′HR′ +JJT +R

Finally, J is defined as:

GJT = HT
M (26)

A key element of our approach is that, from this point on,

instead of updating the cross-correlation term, PRM , we will

represent it in a factorized form [see (25)] and apply updates

on its factor, ΓΓΓ, as is shown in Sect. IV-C and Sect. IV-D.

Following this convention, we have:

P =

[
PRR ΓΓΓG−1

(ΓΓΓG−1)T (GGT)−1

]
(27)

Note that we do not compute the inverse of the Cholesky

factor, G. Instead, all update equations involving G will be

of the same form as (26), where a back-solve involving the

sparse G is required for efficiently computing J.

C. C-SKF propagation and local-feature update

1) IMU-based Propagation: By employing the IMU mea-

surement model in (4), the device’s state is propagated while,

as is the case for the SKF, the map’s state remains the same:

x̂ -
R = f(x̂R,u) , x̂ -

M = xM (28)

On the other hand, and in order to propagate the covariance

of the C-SKF [see (27)], we employ the EKF covariance

6256

propagation equation:

P - = ΦΦΦCPΦΦΦT
C +QC =

[
ΦΦΦPRRΦΦΦT +Q ΦΦΦΓΓΓG−1

(ΦΦΦΓΓΓG−1)T (GGT)−1

]
(29)

with

ΦΦΦC =

[
ΦΦΦ 0
0 I

]
, QC =

[
Q 0
0 0

]
(30)

where ΦΦΦ and Q are the IMU Jacobian of the state and

corresponding noise covariance, respectively.

2) C-SKF Local-Feature Measurement Update: When a

local-feature-track measurement becomes available [see (6)],

we arrive at the following Jacobian:

H =
[
Ho

R 0
]

(31)

As in (14), we zero out the Kalman gain associated with the

mapped states, leading to an update of the device state, while

the map remains the same:

x̂ +

R = x̂R +PRRHoT
R S−1r , x̂ +

M = x̂M (32)

For the covariance update, we first denote K̄ = PHT :[
K̄R
K̄M

]
=

[
PRR ΓΓΓG−1

(ΓΓΓG−1)T (GGT)−1

][
HoT

R
0

]
=

[
PRRHoT

R
G−T ΓΓΓT HoT

R

]

(33)

Next, we employ (33) and (27) in (16) without evaluating

K̄M , yielding:

P +

RR = PRR−PRRHoT
R S−1Ho

RPRR , P +

MM = PMM (34)

and

P +

RM = ΓΓΓG−1− K̄RS−1K̄T
M

=
(
I−PRRHoT

R S−1Ho
R
)

ΓΓΓG−1 = ΓΓΓ + G−1 (35)

As evident from (29) and (35), both propagation and local-

feature updates have complexity linear in the size of the map,

as we only need to apply a standard EKF update on the de-

vice’s covariance, and update the cross-correlation factor, ΓΓΓ.

D. C-SKF map-based updates

When the device observes previously mapped features, we

employ the methodology of Sect. IV-A [(13)–(16)] using the

measurement model of (8)–(9), and operate on the system

covariance with factorized cross-correlation, as defined in (27).

Specifically, we denote K̄ = PHT as:[
K̄R
K̄M

]
=

[
PRRHT

R +ΓΓΓG−1HT
M

G−T ΓΓΓT HT
R +(GGT)−1HT

M

]
(36)

Note that we do not explicitly compute K̄M , instead we first

compute J as:

GJT = HT
M (37)

Because G is triangular, we can compute J with a back-solve

operation. Substituting J into (36) yields:[
K̄R
K̄M

]
=

[
PRRHT

R +ΓΓΓJT

G−T ΓΓΓT HT
R +G−T JT

]
(38)

Next, we compute the residual covariance:

S = HRPRRHT
R +HRΓΓΓJT +JΓΓΓT HT

R +JJT +R (39)

and state update [see (15)]:

x̂ +

R = x̂R + K̄RS−1r , x̂ +

M = x̂M (40)

Finally, we update the covariance using (16) with (38), and

following the same process as in (35), we produce a factorized

form of the updated cross-correlation:

P +

RR = PRR− K̄RS−1K̄T
R

P +

RM = ΓΓΓG−1− K̄RS−1(HRΓΓΓG−1 +JG−1)

= [ΓΓΓ− K̄RS−1(HRΓΓΓ+J)]G−1 = ΓΓΓ + G−1 (41)

At this point, we should note that unlike propagation

and local-feature updates, the processing requirements of

mapped-feature updates are not strictly linear in the size of

the map. The main bottleneck is (37), as computing J has

complexity between linear and quadratic in the size of the map

(depending on the structure of G). As the map grows, the time

to compute J becomes unacceptable for real-time operation

on a mobile device. This limitation motivates us to introduce

two consistent relaxations of the C-SKF: (i) The sub-map

relaxation of Sect. IV-E and Sect. IV-F. That is, we decrease

the size of G in (37) by partitioning the map into independent

sub-maps. (ii) The consistent sparsification of a given map,

as described in Sect. V, which removes off-diagonal elements

in G caused by loop-closure measurements.

E. Sub-map relaxation

Before discussing the sC-SKF, we first describe the sub-

mapping relaxation process. As shown in Fig. 2 and described

below, we divide the trajectory and associated features into

two separate sets:6

Fig. 2. A partitioning of a single map into two sub-maps, with a geometric
constraint, k(xa,xτ , f j, f′j) = 0, imposed to common features.

First, the IMU-camera poses, ξξξ i, i = 1 . . .M, are divided

into [ξξξ 1, ξξξ N] and [ξξξ N+1, ξξξ M].7 With this division defined,

we partition features into two sets: (i) Fα : those observed by

poses ξξξ 1 to ξξξ N , and (ii) F ′
β : those observed by poses ξξξ N+1

to ξξξ M . Features in Fc = Fα ∩F ′
β are common features

observed in both sub-maps. The cooperative mapping (CM)

algorithm [17] creates a “duplicate” feature set of Fc, F ′
c,

and assigns these duplicate features to the second sub-map

[i.e., Fβ = (F ′
β −Fc)∪F ′

c] such that the two sub-map’s

individual cost functions are independent [see (43)]. Finally,

CM introduces a non-linear geometric constraint between the

features in Fc, f j, and their duplicates, f′j:

k(xa,xτ , f j, f′j) = 0, f j ∈Fc, f′j ∈F ′
c (42)

6Without loss of generality, we present the two sub-map case
7The current partitioning distributes these sets evenly in time.

6257

where xa is the state of all IMU-camera poses and xτ is

the 4 d.o.f. transformation between the two sub-maps. For

each common feature in Fα , this constraint enforces its

corresponding “duplicate” in Fβ to have the same physical

position. Finally, all camera and IMU measurements, zi, j and

ui,i+1, are assigned to their corresponding sub-map (with the

exception of uN,N+1, which is discarded).

With such a partitioning, by ignoring the common-feature

constraints, we form two independent cost functions corre-

sponding to each sub-map, C1 and C2:

C1 =
N

∑
i=1

f j∈Fα

||zi, j−h(ξξξ i, f j)||2R +
N−1

∑
i=1

||ξξξ i+1−g(ξξξ i,ui,i+1)||2Q

C2 =
M

∑
i=N+1
f j∈Fβ

||zi, j−h(ξξξ i, f j)||2R +
M−1

∑
i=N+1

||ξξξ i+1−g(ξξξ i,ui,i+1)||2Q

(43)

where g and h are defined in (4) and (5), respectively.

Summing these two cost functions and imposing the common-

feature constraints yields the following optimization problem:

x∗a,x
∗
τ ,F

∗
α ,F

∗
β = argmin C1 +C2 (44)

s. t. k(xa,xτ , f j, f′j) = 0, f j ∈Fc, f′j ∈F ′
c

which we solve offline by employing CM. At this point,

we should note that, as shown in [17], the solution of (44)

is the same as that of the original BLS of the single map

problem (after discarding uN,N+1). Thus, the estimated feature

positions will be as accurate as if no map partitioning had

occured. Furthermore, at each iteration of Gauss-Newton

minimization of (44), the Cholesky factors G1 and G2 of

the Hessians [corresponding to C1 and C2 in (43)] of the

two submaps are computed, and hence are available to be

used later on (see Sect. IV-F) for reformulating consistent

map-based updates within the C-SKF framework.

F. Cholesky-Kalman-Schmidt with sub-maps (sC-SKF)

In our problem, we take advantage of the high-accuracy

state estimates computed from the solution of (44), but relax

the information attributed to each sub-map by storing the

Cholesky factors, Gi, resulting from each corresponding cost

function in (43) linearized at the CM solution of (44).8

To process mapped measurements with sub-maps, we

represent the system covariance as:

P =

⎡
⎣ PRR ΓΓΓ1G−1

1 ΓΓΓ2G−1
2

(ΓΓΓ1G−1
1)T (G1GT

1)
−1 0

(ΓΓΓ2G−1
2)T 0 (G2GT

2)
−1

⎤
⎦ (45)

where ΓΓΓi and Gi are the cross-correlation factor from (27)

and the Cholesky factor of the i-th sub-map, respectively.

When a mapped feature in, e.g., the first sub-map is

observed, the measurement Jacobian is:

H =
[
HR H1 0

]
(46)

8Such a relaxation causes the sub-maps to become independent, but, as
show in [32], maintains consistency, since it corresponds to dropping the
information associated with the geometric constraint k in (44).

where H1 corresponds to the states in the first sub-map.

Following (37) and (38), we compute J1 and express K̄ as:

G1JT
1 = HT

1 ,

⎡
⎣K̄R

K̄1

K̄2

⎤
⎦=

⎡
⎣ PRRHT

R +ΓΓΓ1JT
1

G−T
1 (ΓΓΓT

1 HT
R +JT

1)

G−T
2 ΓΓΓT

2 HT
R

⎤
⎦ (47)

The residual covariance and state update are computed as:

S = HRPRRHT
R +HRΓΓΓ1JT

1 +J1ΓΓΓT
1 HT

R +J1JT
1 +R

x̂ +

R = x̂R + K̄RS−1r , x̂ +

1 = x̂1 , x̂ +

2 = x̂2 (48)

Finally, we update the covariance and cross-correlation using

the same factorization as the single-map case [see (41)]:

P +

RR = PRR− K̄RS−1K̄T
R , P +

11 = P11 , P +

22 = P22

P +

R1 = ΓΓΓ1G−1
1 − K̄RS−1K̄T

1

= [ΓΓΓ1− K̄RS−1(HRΓΓΓ1 +J1)]G−1
1 = ΓΓΓ +

1 G−1
1 (49)

P +

R2 = ΓΓΓ2G−1
2 − K̄RS−1K̄T

2

= [I− K̄RS−1HR]ΓΓΓ2G−1
2 = ΓΓΓ +

2 G−1
2 (50)

Note that partitioning the map into two independent sub-

maps significantly lowers the cost of the C-SKF map-based

updates. Specifically, by reducing the size of the Cholesky

factor involved in the mapped-feature update, we lower the

processing requirements of the C-SKF’s bottleneck (the back-

substitution in (37) for computing J) which has complexity

between linear and quadratic in the map’s size, depending

on the structure of the Cholesky factor. It should be noted,

however, that increasing the number of sub-maps decreases

the information associated with the map, which typically

leads to less accurate device pose estimates.

V. CONSISTENT MAP SPARSIFICATION

As previously mentioned, the cost of the back-solve

required by the C-SKF [see (37)] depends not only on

the size of the (sub-)map, but also on the structure of the

corresponding Cholesky factor. In particular, if a map does

not contain loop-closure (LC) measurements, the resulting

Hessian forms a banded structure, which in turn yields a

triangular-banded Cholesky factor. In the presence of many

loop-closures, however, the off-diagonal of the Cholesky

factor becomes dense, causing both the memory requirements

and computational complexity of the back-solve step to

increase from linear, in the size of the map, to quadratic. Our

approach to address this issue is to consider the contribution

of only a subset of select LC measurements in the Hessian

matrix used for computing the Cholesky factor.9 Specifically,

the Hessian of the map can be written as:

H = H ′ −HT
mHm (51)

Where H ′ is the original map’s Hessian (using all measure-

ments), and Hm is the whitened Jacobian corresponding to

all neglected LC measurements. It is easy to see that this

relaxation is consistent (i.e., H �H ′), because HT
mHm is

positive semi-definite by construction.

9Note that the method described here only affects the calculation of the
(sub-)map’s Cholesky factor. For the mapped poses’ and features’ state esti-
mates, we use the result of solving the original optimization problem in (44).

6258

When selecting LC measurements to drop, we attempt

to satisfy the following objectives: (i) The Cholesky factor

is sufficiently sparse; (ii) The information loss due to this

relaxation is minimal; (iii) The measurements to be dropped

can be efficiently determined.

To do so we introduce a heuristic, linear (in the number

of mapped poses) complexity algorithm. In particular, we

consider each pose in the mapped-trajectory in temporal order:

1) If LC measurements to this pose exist, we keep (drop)

them if the time since the previous LC is above (below)

a threshold, t� (e.g., t� = 2 min).

2) Else (no LCs observed) if at least t� has passed since

the last kept LC, we check if there has been a pose with

LC measurements in the near past (within a threshold

ts = 30 sec), and retroactively enable them.

Once each mapped-pose has been visited, we reform the

map’s Hessian and its Cholesky factor using only the kept

LC measurements (in addition to the consecutive-feature

tracks and IMU measurements).

The intuition behind this approach is that the value of a LC

(in terms of information gain) grows the longer the user has

been exploring without closing a loop. Thus, we set a thresh-

old for the time between consecutive LCs, and drop any that

are encountered until this time threshold is reached. On the

other hand, step (2) ensures we do not miss an important LC

before an extended exploration phase. Such a strategy satisfies

the objectives given earlier: (i) We can control the sparsity of

the Cholesky factor by tuning the thresholds t� and ts (ii) LC

measurements that occur after extended periods of exploration,

which cause large corrections are retained, while subsequent,

close in space and time, measurements, whose impact is small,

are neglected. (iii) The selection process is very fast, only

needing to visit each pose in the mapped trajectory once.

VI. EXPERIMENTAL RESULTS

All experimental results are obtained on a Google Tango

tablet [36], which is equipped with a fisheye, global-shutter,

gray-scale camera, a MEMS quality IMU, a quad-core,

2.3 GHz ARM Cortex-A15 CPU, and 4 GB of RAM.

The accuracy of the sC-SKF and C-SKF with and without

map sparisification is reported in Table I, and compared to

the inconsistent map-based localization method of treating

the map as perfect, while inflating the measurement noise

(e.g., [3], [4]). All four datasets are indoors and of varying

sizes. The smallest one is limited to a single room with

VICON ground truth. The other three correspond to large

buildings, include challenging motions (moving along the

optical axis through open spaces) under unfavorable lighting

conditions (several underexposed scenes), and are evaluated

against BLS ground truth. It should be noted that for

significant portions (40%) of the 3-floor long dataset, the

user navigates throughout unmapped areas, which leads to

larger errors during these periods. In order to compare the

consistency of our method against that of [3] and [4], Fig. 3

shows the error and 3σ bounds for the sC-SKF estimator

employing 2 sub-maps and for the inflated-measurement-

noise approach (σ = 7.5pixels), in the room dataset. Note

that in the latter case the errors in y exceed the 3σ bounds.

0 10 20 30 40 50 60

x-
er

ro
r (

m
)

-0.2

-0.1

0

0.1

0.2
sC-SKF

0 10 20 30 40 50 60

y-
er

ro
r (

m
)

-0.2

-0.1

0

0.1

0.2

time (s)
0 10 20 30 40 50 60

z-
er

ro
r (

m
)

-0.1

-0.05

0

0.05

0.1

0 10 20 30 40 50 60

x-
er

ro
r (

m
)

-0.2

-0.1

0

0.1

0.2
Perfect Map, Inflated Noise

0 10 20 30 40 50 60

y-
er

ro
r (

m
)

-0.2

-0.1

0

0.1

0.2

time (s)
0 10 20 30 40 50 60

z-
er

ro
r (

m
)

-0.1

-0.05

0

0.05

0.1

Fig. 3. Position error and 3σ bounds for the sC-SKF with 2 sub-maps
(left) and the perfect map approximation (right).

Dataset room single-floor 3-floor short 3-floor long

Num. Mapped Features 2.2K 8.7K 15.8K 15.8K

Num. Submaps (for sC-SKF) 2 4 6 6

Trajectory Length 71 m 293 m 198 m 744 m

C-SKF 6.2 cm 13.1 cm 8.1 cm 49.5 cm

Sparse-map C-SKF 6.4 cm 13.3 cm 8.0 cm 50.4 cm

sC-SKF 6.6 cm 13.4 cm 8.5 cm 51.2 cm

Sparse-map sC-SKF 6.9 cm 15.8 cm 8.7 cm 51.6 cm

Perfect Map Approx. 8.3 cm 18.3 cm 10.5 cm 57.6 cm

TABLE I

RMSE COMPARISON OF THE PROPOSED METHODS AGAINST THE PERFECT

MAP APPROXIMATION.

Num. Feat. 2,095 2,397 3,433 8,770

P Size 158 MB 207 MB 425 MB 2.8 GB

G Size 38.9 MB 22.0 MB 161.4 MB 107.3 MB

Gsparse Size 26.5 MB 15.6 MB 32.1 MB 50.4 MB

Update Time, (G) 162.4 ms 140.4 ms 427.5 ms 712.8 ms

Update Time, (Gsparse) 150.7 ms 132.4 ms 184.5 ms 501.9 ms

TABLE II

MEMORY REQUIREMENTS AND UPDATE TIMINGS OF VARIOUS MAPS

Furthermore, the results of Table I demonstrate that the C-SKF

outperforms the inconsistent perfect map approximation, even

after employing the sub-map and sparsification relaxations.

As mentioned earlier, the storage requirements of the

map’s uncertainty (or information) is the main limitation

of the SKF addressed by the C-SKF, and further improved

by sparsification. The sizes of the covariance, P, (required by

the SKF), and both the full and sparsified Cholesky factors,

G and Gsparse, for several maps, as well as the corresponding

C-SKF mapped-feature update time (for 20 measurements)

are available in Table II. As expected, the sparse Cholesky

factor requires significantly less disk space than the dense

covariance, and its memory footprint grows at a slower rate

as the map size increases. Moreover, and as expected, we

observe a decrease in map density and update time after

sparsification. These gains are more pronounced in the case

of maps that contain either a large number of loop-closures or

extended periods of time hovering over the same scene. The

smaller maps (i.e., sub-maps) allow for real-time operation

(albeit at a lower frequency than the camera’s 30Hz capture

rate); as a point of comparison, the perfect map approximation

method requires on average 7 ms to process 20 measurements

to mapped-features, regardless of map size.

6259

VII. CONCLUSION AND FUTURE WORK

In this paper, we focused on the problem of performing

approximate, but consistent map-based localization. Specif-

ically, and motivated from the linear (in the map’s size)

processing cost, but quadratic memory requirements of the

Schmidt-Kalman filter (SKF) when applied to map-based

localization, we introduced the Cholesky (C)-SKF, which

uses the map’s Cholesky factor to model the information

(and thus uncertainty) in the prior map. By doing so, and

given the sparsity of the Cholesky factor, the C-SKF has

memory requirements only linear in the map’s size. Moreover,

its equations are factored in such a form so as to avoid

inverting the Cholesky factor of the map’s Hessian. Despite

the gains in memory efficiency, however, the processing cost

of the C-SKF may grow more than linearly in the map’s

size, which motivated us to introduce two relaxations: (i) the

sC-SKF, which uses the sub-maps obtained by partitioning

the original map, and (ii) a Cholesky factor sparsification

method that selects and maintains a subset of loop-closure

measurements based on their temporal distribution. Lastly,

the computational requirements of the proposed C-SKF and

sC-SKF were assessed using a Google Tango tablet, where

we demonstrated their superior performance against other

approximate, but inconsistent, map-based approaches through

real-world experiments. As future work, we seek to find

an optimal partitioning of sub-maps, and exploit additional

metrics for loop-closure measurement selection.

REFERENCES

[1] M. Agrawal and K. Konolige, “FrameSLAM: From bundle adjustment
to real-time visual mapping,” IEEE Trans. on Robotics, vol. 24, no. 5,
pp. 1066–1077, Oct. 2008.

[2] G. Klein and D. Murray, “Parallel tracking and mapping for small AR
workspaces,” in 6th IEEE and ACM International Symposium on Mixed
and Augmented Reality, Nara, Japan, Nov. 13–16 2007, pp. 225–234.

[3] A. I. Mourikis, N. Trawny, S. I. Roumeliotis, A. E. Johson, A. Ansar,
and L. Matthies, “Vision-aided inertial navigation for spacecraft entry,
descent, and landing,” IEEE Trans. on Robotics, vol. 25, no. 2, pp.
264–280, Apr. 2009.

[4] S. Lynen, T. Sattler, M. Bosse, J. Hesch, M. Pollefeys, and R. Siegwart,
“Get out of my lab: Large-scale, real-time visual-inertial localization,”
in Proc. of Robotics: Science and Systems Conference, Rome, Italy,
July 13–17 2015.

[5] S. Middelberg, T. Sattler, O. Untzelmann, and L. Kobbelt, “Scalable
6-dof localization on mobile devices,” in Proc. of the European
Conference on Computer Vision, Zurich, Switzerland, Sept. 6–12 2014,
pp. 649–663.

[6] J. Ventura, C. Arth, G. Reitmayr, and D. Schmalstieg, “Global
localization from monocular SLAM on a mobile phone,” IEEE Trans.
on Visualization and Computer Graphics, vol. 20, no. 4, pp. 531–539,
Apr. 2014.

[7] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “Observability-
based rules for designing consistent EKF SLAM estimators,” The
International Journal of Robotics Research, vol. 29, no. 5, pp. 502–
528, Apr. 2010.

[8] S. F. Schmidt, “Applications of state space methods to navigation
problems,” Advanced Control Systems, vol. 3, pp. 293–340, 1966.

[9] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear
approaches. John Wiley & Sons, 2006.

[10] J. E. Guivant and E. M. Nebot, “Optimization of the simultaneous
localization and map-building algorithm for real-time implementation,”
IEEE Trans. on Robotics and Automation, vol. 17, no. 3, pp. 242–257,
2001.

[11] S. J. Julier, “A sparse weight Kalman filter approach to simultaneous
localisation and map building,” in Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 3, Maui, HI, USA,
Oct. 29 – Nov. 3 2001, pp. 1251–1256.

[12] E. D. Nerurkar and S. I. Roumeliotis, “Power-SLAM: a linear-
complexity, anytime algorithm for SLAM,” The International Journal
of Robotics Research, vol. 30, no. 6, pp. 772–788, May 2011.

[13] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis, “Con-
sistency analysis and improvement of vision-aided inertial navigation,”
IEEE Trans. on Robotics, vol. 30, no. 1, pp. 158–176, Feb. 2014.

[14] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, “Bundle
adjustment - a modern synthesis,” in Vision Algorithms: Theory and
Practice. Springer–Verlag, 2000, pp. 298–375.

[15] J. J. Leonard and H. J. S. Feder, “A computationally efficient method
for large-scale concurrent mapping and localization,” in Proc. of the
International Symposium on Robotic Research, Snowbird, UT, Oct.
9–12 2000, pp. 169–178.

[16] K. Ni, D. Steedly, and F. Dellaert, “Tectonic SAM: Exact, out-of-core,
submap-based SLAM,” in Proc. of the IEEE International Conference
on Robotics and Automation, Rome, Italy, Apr. 10–14 2007, pp. 1678–
1685.

[17] C. Guo, K. Sartipi, R. DuToit, G. Georgiou, R. Li, J. O’Leary,
E. Nerurkar, J. Hesch, and S. Roumeliotis, “Large-scale cooperative 3D
visual-inertial mapping in a Manhattan world,” in Proc. of the IEEE
International Conference on Robotics and Automation, Stockholm,
Sweden, May 16–21 2016, pp. 1071–1078.

[18] N. Carlevaris-Bianco and R. M. Eustice, “Conservative edge sparsifica-
tion for graph SLAM node removal,” in Proc. of the IEEE International
Conference on Robotics and Automation, Hong Kong, China, May 31
– June 7 2014, pp. 854–860.

[19] M. Mazuran, G. D. Tipaldi, L. Spinello, and W. Burgard, “Nonlinear
graph sparsification for SLAM,” in Proceedings of Robotics: Science
and Systems, Berkeley, CA, USA, July 12–16 2014.

[20] N. Carlevaris-Bianco and R. M. Eustice, “Generic factor-based node
marginalization and edge sparsification for pose-graph SLAM,” in Proc.
of the IEEE International Conference on Robotics and Automation,
Karlsruhe, Germany, May 6–10 2013, pp. 5748–5755.

[21] L. Paull, G. Huang, and J. J. Leonard, “A unified resource-constrained
framework for graph SLAM,” in Proc. of the IEEE International
Conference on Robotics and Automation, Stockholm, Sweden, May
16–21 2016, pp. 1346–1353.

[22] E. Eade, P. Fong, and M. E. Munich, “Monocular graph SLAM
with complexity reduction,” in Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, Taipei, Taiwan, Oct.
18–22 2010, pp. 3017–3024.

[23] G. Huang, M. Kaess, and J. J. Leonard, “Consistent sparsification for
graph optimization,” in Proc. of the European Conference on Mobile
Robots, Sept. 25–27 2013, pp. 150–157.

[24] K. Eckenhoff, L. Paull, and G. Huang, “Decoupled, consistent node
removal and edge sparsification for graph-based SLAM,” in Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Daejeon, Korea, Oct. 9–14 2016, pp. 3275–3282.

[25] J. Vial, H. Durrant-Whyte, and T. Bailey, “Conservative sparsification
for efficient and consistent approximate estimation,” in Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
San Francisco, CA, Sept. 25–30 2011, pp. 886–893.

[26] S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE
Transactions on Signal Processing, vol. 57, no. 2, pp. 451–462, 2009.

[27] A. Alahi, R. Ortiz, and P. Vandergheynst, “FREAK: Fast retina
keypoint,” in Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition, College Park, MD, June 16–21 2012, pp. 510–517.

[28] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary
tree,” in Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, New York, NY, June 17–22 2006, pp. 2161–2168.

[29] C. Guo, D. Kottas, R. DuToit, A. Ahmed, R. Li, and S. Roumeliotis,
“Efficient visual-inertial navigation using a rolling-shutter camera with
inaccurate timestamps,” in Proceedings of Robotics: Science and
Systems, Berkeley, CA, USA, July 12–16 2014.

[30] C. Harris and M. Stephens, “A combined corner and edge detector,”
in Proc. of the Alvey Vision Conference, Manchester, UK, Aug. 31 –
Sept. 2 1988, pp. 147–151.

[31] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proc. of the International Joint
Conference on Artificaial Intelligence, Vancouver, British Columbia,
Aug. 24–28 1981, pp. 674–679.

[32] R. C. DuToit, J. A. Hesch, E. D. Nerurkar, and S. I. Roumeliotis,
“Consistent map-based 3D localization on mobile devices,” arXiv
preprint arXiv:1604.08087, 2016.

[33] F. M. Mirzaei and S. I. Roumeliotis, “A Kalman filter-based algorithm
for IMU-camera calibration: Observability analysis and performance
evaluation,” IEEE Trans. on Robotics, vol. 24, no. 5, pp. 1143–1156,
Oct. 2008.

[34] A. B. Chatfield, Fundamentals of High Accuracy Inertial Navigation.
American Institute of Aeronautics and Astronautics, 1997, vol. 174.

[35] Z. Kukelova, M. Bujnak, and T. Pajdla, “Closed-form solutions to
minimal absolute pose problems with known vertical direction,” in
Proc. of the Asian Conference on Computer Vision, Queenstown, New
Zealand, Nov. 8–12 2011, pp. 216–229.

[36] Google, “Project Tango,” https://get.google.com/tango/.

6260

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

