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Optimal Motion Strategies for Range-only
Constrained Multi-sensor Target Tracking

Ke Zhou† and Stergios I. Roumeliotis‡

Abstract—In this paper, we study the problem of optimal
trajectory generation for a team of mobile sensors tracking a
moving target using distance-only measurements. This problem
is shown to be NP-Hard, in general, when constraints are imposed
on the speed of the sensors. We propose two algorithms, modified
Gauss-Seidel-relaxation and LP-relaxation, for determining the
set of feasible locations that each sensor should move to in
order to collect the most informative measurements; i.e., distance
measurements that minimize the uncertainty about the position
of the target. Furthermore, we prove that the motion strategy
that minimizes the trace of the position error covariance matrix is
equivalent to the one that maximizes the minimum eigenvalue of
its inverse. The two proposed algorithms are applicable regardless
of the process model that is employed for describing the motion of
the target, while the computational complexity of both methods
is linear in the number of sensors. Extensive simulation results
are presented demonstrating that the performance attained with
the proposed methods is comparable to that obtained with grid-
based exhaustive search, whose computational cost is exponential
in the number of sensors, and significantly better than that of a
random, towards the target, motion strategy.

Index Terms—Mobile Sensor, Target Tracking, Distance Mea-
surement, Modified Gauss-Seidel Relaxation, LP Relaxation.

I. INTRODUCTION

Target tracking has recently attracted significant interest
in the research community because of its importance in a
variety of applications, such as environmental monitoring [ 1],
surveillance [2], [3], human-robot interaction [4], as well as
defence applications [5]. In order to obtain increased tracking
accuracy and monitor extensive areas, a large number of
sensors are often utilized for tracking, while communicating
over a wireless sensor network. When multiple nodes obtain
measurements of a target of interest, the acquired data can be
processed, either at a fusion center, or in a distributed fashion,
in order to estimate the target’s trajectory.

As an alternative to using static sensors, the deployment
of mobile sensors (i.e., robots) for tracking offers significant
advantages. By providing mobility to the sensors, a larger area
can be covered without the need to increase the number of
nodes in the sensing network [6]. Additionally, the spatial
distribution of the sensors can be changed dynamically in order
to adapt to the motion of the target. For example, a team
of sensors can actively pursue a target, to avert the target’s
evasion from the sensors’ visibility range [7].

Regardless of the estimation algorithm employed in a given
application, the processing of every new measurement by a
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networked tracking system incurs a penalty in terms of use of
communication bandwidth and CPU time, as well as in terms
of power consumption. Since these resources are inevitably
limited, it is necessary to devise active sensing algorithms that
guarantee their optimal utilization. Moreover, in many tracking
applications the time needed for determining the trajectory of
a target is critically important (e.g., when tracking a hostile
target). Sensors that actively pursue a target and move to
locations where they collect the most informative measure-
ments, can achieve optimal tracking performance. That is, they
will minimize the uncertainty about the position of the target
significantly faster compared to a random motion strategy.

In this paper, we study the problem of determining optimal
trajectories for a team of sensors that track a moving target
using range (distance) measurements. Since the measurement
model is non-linear, the locations where distance measure-
ments are collected have a profound effect on the estimation
accuracy. Consider, for example, the simple case of a single
sensor tracking a target using distance measurements corrupted
by Gaussian noise (cf. Fig. 1(a) and Fig. 1(b)). In this scenario,
the prior uncertainty for the position of the target Pk+1|k
is depicted by the solid-line 3σ ellipse shown in Fig. 1(a).
If the sensor remains still and measures the distance to the
target, then based solely on this measurement, the sensor
believes that the target is within the dotted-line circular ring
with probability 99.7%. Combining the prior estimate with
this measurement, the posterior uncertainty Pk+1|k+1 is only
slightly reduced (dashed-line ellipse in Fig. 1(a)). As evident,
by remaining in the same position, the sensor’s measurement
provides limited information for the target’s position along
the x direction. If instead, the sensor moves to a new location
(cf. Fig. 1(b)), then combining this new measurement with
the prior estimate will result in significant reduction of the
uncertainty in both directions, but primarily along the x-axis.
The improved confidence in the target-position estimate after
this informative measurement is processed, is depicted by the
small dashed-line ellipse in Fig. 1(b).

In this work, we extend this intuitive strategy to the case of
one moving target and multiple moving sensors and determine
the optimal trajectories that the sensors should follow to
minimize the error in the posterior estimate of the position
of the target [8]. Here, optimality is sought with respect to the
accuracy of the target’s localization, i.e., we seek to minimize
the trace of the covariance matrix of the target’s position
estimate. We show that regardless of the target’s motion model,
this optimization problem can be exactly reformulated as that
of minimizing the norm of the sum of a set of vectors of
known length (cf. Section III). The motion direction of each
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Fig. 1. (a) Suboptimal target tracking: The sensor remains in the same location. (b) Optimal target tracking: The sensor moves to the position that minimizes
the uncertainty for the target’s position along the x-axis. In both plots, the prior uncertainty (3σ) is denoted by a solid-line ellipse, the posterior by a
dashed-line ellipse, while the measurement uncertainty is depicted as a circular ring (dotted-line) with center the location of the sensor.

sensor affects the direction of the corresponding vector, while
the speed of motion determines the range of possible angles
(constraints) for each vector. We also prove that this optimiza-
tion problem is indeed NP-Hard in general (cf. Section IV)
and show that minimizing the trace of the covariance matrix
is equivalent to maximizing the minimum eigenvalue of its
inverse (cf. Section III).

Two novel relaxation algorithms, modified Gauss-Seidel
relaxation and Linear Programming (LP) relaxation, are pro-
posed for solving this problem (cf. Section V), and it is shown
through extensive simulation studies that the performance
attainable with each of them is comparable to that obtained
with a grid-based exhaustive search algorithm. While the
computational complexity of exhaustive search is prohibitively
large (exponential in the number of sensors), both proposed
relaxation methods have complexity only linear in the number
of sensors, and are thus well-suited for real-time implementa-
tions. Additionally, the accuracy achieved by both modified
Gauss-Seidel relaxation and LP relaxation is significantly
better than that obtained when following a “random” motion
strategy (cf. Section VI).

Following a brief review of related literature in Section II,
we present the formulation of the target tracking problem
in Section III. In Section IV, we show that the problem
is NP-hard. We describe two proposed relaxation algorithms
in Section V. Extensive simulation results are presented in
Section VI. Finally, in Section VII the conclusions of this
work are drawn and future research directions are suggested.

II. LITERATURE REVIEW

Target tracking has received considerable attention in the
literature (e.g., [9], [10]). In most cases, however, the sensors
involved are static and the emphasis is on the optimal pro-
cessing of the available information rather than the placement
or repositioning of the sensors. The idea of choosing sensing
locations in order to maximize information gain (also known

as adaptive sensing or active perception [11]) has been applied
to the problems of cooperative localization [12], Simulta-
neous Localization and Mapping (SLAM) [11], parameter
detection [13], [14], and optimal sensor selection [15]. In
particular for single-sensor target tracking using bearing-only
measurements, significant work has been presented in [16],
[17], [18], [19], [20]. In these cases, the most common
optimization criterion used is the determinant of the Fisher
Information Matrix (FIM) over a horizon of one or multiple
time steps.

Due to the key differences in the observation model when
distance, instead of bearing, measurements are used and the
implications on the selection process of the next best sensing
location, we hereafter limit our discussion to single- and multi-
sensor active sensing approaches that use distance and bearing
or distance-only measurements to the target. The latter case is
the main focus of our work.

A. Active target tracking - distance and bearing measurements

Stroupe and Balch [21] propose an approximate tracking
behavior, in which the mobile sensors attempt to minimize
the target location uncertainty using distance and bearing
measurements. The objective function is the determinant of the
target position estimates’ covariance matrix. The optimization
process in this case does not consider the set of all possi-
ble trajectories. Instead, a greedy search is performed over
the discretized set of possible headings, separately for each
sensor. Additionally, the proposed algorithm approximates the
expected information gain from the teammates’ actions by
assuming that the other sensors’ measurements in the next
time step will be the same as these recorded at their current
locations.

Olfati-Saber [22] addresses the problem of distributed target
tracking for mobile sensor networks with a dynamic commu-
nication topology. The author tackles the network connectivity
issue using a flocking-based mobility model, and presents a
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modified version of the distributed Kalman filter algorithm
for estimating the target’s state. In this case, the sensors use
both distance and bearing measurements to a target that moves
in 2D with constant velocity driven by zero-mean Gaussian
noise. The objective of the proposed algorithm is to minimize
the distance between the sensor and the target, while at the
same time avoid collisions. The proposed algorithm does not
consider positioning information from previous steps.

Chung et al. [23] present a decentralized motion planning
algorithm for solving the multi-sensor target tracking problem
using both distance and bearing measurements. The authors
employ the determinant of the target’s position covariance
matrix as the cost function. The decentralized control law
in this case is based on the gradient of the cost function
with respect to each of the sensor’s coordinates with constant
step-size of 1. The authors, however, do not account for
the speed constraints on the motion of sensors. In addition,
the convergence rate of the gradient-based method and the
existence of local minima are not considered.

B. Active target tracking - distance-only measurements

Contrary to [23], where sensors can transmit/receive infor-
mation to/from all their teammates, in [24] they are confined
to communicate with one-hop neighbors only. In this case,
distance-only measurements are used, while both the trace
and the determinant of the covariance matrix for the target’s
position estimates are considered as objective functions. The
control law, with constant step size, is computed from the
gradient of the cost function with respect to each sensor’s
coordinates. However, as is the case for [23], physical con-
straints on the motion of the sensors are not accounted for.
Furthermore, the impact of the step-size selection on the
convergence of the algorithm and the existence of local minima
are not considered.

In [25], Martı́nez and Bullo address the problem of opti-
mal sensor placement and motion coordination strategies for
mobile sensor networks using distance-only measurements. In
this case, all the sensors are assumed to be identical (i.e., same
level of accuracy in the distance measurements). The authors
consider the optimal sensor placement for (non random) static
target position estimation. The objective is to maximize the
determinant of the FIM, or equivalently minimize the deter-
minant of the covariance matrix. However, the optimization
process does not address the dynamic target case. Instead,
the authors argue that the optimal sensor placement derived
for the static target scenario is also expected to have good
performance in the dynamic case. By not considering the prior
estimates and assuming a homogeneous sensor team with no
motion constraints, the optimal placement of the sensors can
be computed analytically. The resulting control law requires
that the sensors move on a polygon surrounding the static
target so as the vectors from the target to each sensor are
uniformly (in terms of direction) spaced.

The main drawback of the previous approaches is that
no constraints on the speed of the sensors are considered.
Furthermore, their impact on the computational complexity
of the optimization algorithm used is not examined. The only

exception is the work presented in [21]. In that case, how-
ever, these constraints are used only to define the discretized
region over which the heading of each sensor is optimized
independently (i.e., each sensor determines its next sensing
location without considering the constraints on the motion of
its teammates).

In this paper, we address the problem of constrained optimal
target tracking using distance measurements collected from
teams of heterogeneous sensors. In the problem formulation,
we account for the existence of prior information, the impact
of which can be appreciated from the simple example shown
in Figs. 1(a) and 1(b). Furthermore, we consider constraints on
the speed of the sensors and prove that their inclusion makes
the problem NP-Hard. Based on appropriate relaxations of the
original problem, we propose two algorithms, modified Gauss-
Seidel relaxation and LP relaxation, that minimize the trace of
the target’s position estimate covariance matrix with respect
to the motion of all sensors concurrently. Both algorithms
have computational complexity linear in the number of sensors
and achieve tracking accuracy indistinguishable of that of
an exhaustive search over all possible combinations of the
sensors’ directions.

III. PROBLEM FORMULATION

Consider a group of mobile sensors (or robots) moving
in a plane and tracking the position of a moving target by
processing distance measurements. In this paper, we study
the case of global tracking, i.e., the position of the target is
determined with respect to a fixed (global) frame of reference,
instead of a relative group-centered one. Hence, we hereafter
employ the assumption that the position and orientation (pose)
of each of the tracking sensors are known with high accuracy
within the global frame of reference; this is the case, for
example, when all sensors have access to precise GPS and
compass measurements.

Furthermore, we consider the case where each sensor can
move in 2D with speed vi, which is upper bounded by vimax,
i = 1, . . . , M , where M is the number of sensors. Therefore,
at time-step k + 1, sensor-i can only move within a circular
region centered at its position at time-step k with radius r =
vimaxδt (cf. Fig. 2), where δt is the time step. Note also that
since the motion of the target can be reliably predicted for the
next time step only, our objective is to determine the next best
sensing locations for all sensors at every time step.

In the next two sections, we present the target’s state
propagation equations and the sensors’ measurement model.

A. State Propagation

In this work, we employ the Extended Kalman Filter (EKF)
for recursively estimating the target’s state, xT (k). This is
defined as a vector of dimension 2N , where N is the highest
order time derivative of the position described by the motion
model, and can include components such as position, velocity,
and acceleration:

xT (k) = [ xT (k) yT (k) ẋT (k) ẏT (k) ẍT (k) ÿT (k) ... ]T (1)
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Fig. 2. Illustration of sensor’s and target’s motion: Each sensor moves in 2D
with speed vi, which is bounded by vimax . From time-step k to k + 1, the
sensor can only move within a circular region centered at its position at time-
step k with radius r = vimaxδt. sipT is the target’s position with respect
to sensor-i. The distance measurement is the norm of sipT plus noise.

We consider the case that the target moves randomly and
assume that we know the stochastic model describing the
motion of the target (e.g., constant-acceleration or constant-
velocity, etc). However, as it will become evident later on,
neither of our sensing strategies depends on the particular
selection of the target’s motion model.

The discrete-time state propagation equation is:

xT (k + 1) = ΦkxT (k) + Gkwd(k) (2)

where wd is a zero-mean white Gaussian noise process with
covariance Qd = E[wd(k)wT

d (k)].
The estimate of the target’s state is propagated by:1

x̂T (k + 1|k) = Φkx̂T (k|k) (3)

where x̂T (�|j) is the state estimate at time-step �, after
measurements up to time-step j have been processed.

The error-state covariance matrix is propagated as:

Pk+1|k = ΦkPk|kΦT
k + GkQdG

T
k

where P�|j is the covariance of the error, x̃T (�|j), in the state
estimate. The state transition matrix, Φk, and the process noise
Jacobian, Gk, that appear in the preceding expressions depend
on the motion model used [26]. In our work, these can be
arbitrary matrices, since no assumptions on their properties
are imposed.

B. Measurement model

At time-step k + 1, each sensor of the team measures its
distance to the target, as shown in Fig. 2, and therefore the
measurement equation is:

z(k + 1) =

⎡⎢⎣ d1(k + 1)
...

dM (k + 1)

⎤⎥⎦+

⎡⎢⎣ n1(k + 1)
...

nM (k + 1)

⎤⎥⎦
= d(k + 1) + n(k + 1) (4)

1In the remainder of the paper, the “hat” symbol,ˆ , is used to denote the
estimated value of a quantity, while the “tilde” symbol,˜, is used to signify the
error between the actual value of a quantity and its estimate. The relationship
between a variable, x, and its estimate, x̂, is x̃ = x − x̂.

with (for i = 1, . . . , M )

di(k + 1) =
√

sipT (k + 1)T sipT (k + 1)

=
√

(pT (k + 1)− pi(k + 1))T(pT (k + 1)− pi(k + 1))

=
√

(xT (k + 1)− xi(k + 1))2 + (yT (k + 1)− yi(k + 1))2

where sipT (k + 1) is the position of the target with respect
to sensor-i, and pT (k +1) = [xT (k +1) yT (k +1)]T, pi(k +
1) = [xi(k + 1) yi(k + 1)]T are the positions of the target
and the sensor respectively, expressed in the global frame of
reference. Note also that ni(k + 1) is the noise in the i-th
sensor’s distance measurement, which is a zero-mean white
Gaussian process, independent of the noise in other sensors,
with variance E[ni(k+1)nj(k+1)] = σ2

i δij , where δij is the
Kronecker delta.

The measurement equation (4) is a nonlinear function of the
state variables. The measurement-error equation, obtained by
linearizing (4) is:

z̃(k + 1|k) = z(k + 1)− ẑ(k + 1|k)
� Hk+1x̃T (k + 1|k) + n(k + 1) (5)

where

ẑ(k + 1|k) = [d̂1(k + 1|k) . . . d̂M (k + 1|k)]T

d̂i(k + 1|k) =
√

Δ̂x
2

Ti(k + 1|k) + Δ̂y
2

Ti(k + 1|k)

Δ̂xTi(k + 1|k) = x̂T (k + 1|k)− xi(k + 1)

Δ̂yTi(k + 1|k) = ŷT (k + 1|k)− yi(k + 1)
x̃T (k + 1|k) = xT (k + 1)− x̂T (k + 1|k)

Note that the measurement matrix in (5) has a block column
structure, which is given by the following expression:

Hk+1 =
[
He,k+1 0M×(2N−2)

]
(6)

where 2N is the dimension of the state vector and

HT
e,k+1 =

[
cos θ1(k + 1) . . . cos θM (k + 1)
sin θ1(k + 1) . . . sin θM (k + 1)

]
(7)

cos θi(k + 1) =
Δ̂xTi(k + 1|k)

d̂i(k + 1|k)
(8)

sin θi(k + 1) =
Δ̂yTi(k + 1|k)

d̂i(k + 1|k)
(9)

The angle θi that appears in the preceding equations represents
the bearing angle of sensor-i towards the estimated position
of the target, expressed in global coordinates (cf. Fig. 3).

C. State and Covariance Update

Once the distance measurements, z(k+1), from all the sen-
sors are available, the target’s state estimate and its covariance
are updated as:

x̂T (k + 1|k + 1) = x̂T (k + 1|k) + Kk+1z̃(k + 1|k)
Pk+1|k+1 = Pk+1|k −Kk+1Sk+1K

T
k+1 (10)

where Kk+1 = Pk+1|kHT
k+1S

−1
k+1 is the Kalman gain, Sk+1 =

Hk+1Pk+1|kHT
k+1+R is the measurement residual covariance,
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and R = diag(σ2
i ) is the measurement noise covariance.

Our objective in this work is to determine the active
sensing strategy that minimizes the uncertainty for the position
estimate of the target. In order to account for the impact of
the prior state estimates on the motion of the sensors, we first
prove the following lemma.

Lemma 1: The posterior (updated) covariance for the tar-
get’s position estimate depends on (i) the prior (propagated)
covariance sub-matrix of the target’s position (i.e., it is in-
dependent of the uncertainty in the estimates of higher-order
time derivatives of the position such as velocity, acceleration,
etc, and hence it is independent of the target’s motion model)
and (ii) the measurement information matrix corresponding to
the target’s position, i.e.,

Pk+1|k+1,11 =
((

Pk+1|k,11

)−1
+ HT

e,k+1R
−1He,k+1

)−1

(11)

Proof: The covariance matrices appearing in (11) are
defined based on the following partition:

P�|j =
[
P�|j,11 P�|j,12
PT

�|j,12 P�|j,22

]
(12)

where the 2× 2 matrix P�|j,11 denotes the covariance for the
target’s position estimate, p̂T = [x̂T ŷT ]T, at time-step � given
measurements up to time-step j.

Employing the matrix inversion lemma, the covariance
update equation, (cf. (10)) can be written as

P−1
k+1|k+1 = P−1

k+1|k + HT
k+1R

−1Hk+1 (13)

Note that if the state vector contains only the position of the
target, then (11) is identical to (13).

In the general case, when the state vector also contains
higher order derivatives of the position (e.g., velocity, accel-
eration, etc), substituting

P−1
k+1|k =

[
A11 A12

AT
12 A22

]
(14)

and

HT
k+1R

−1Hk+1 =
[
HT

e,k+1R
−1He,k+1 02×(2N−2)

0(2N−2)×2 0(2N−2)×(2N−2)

]
on the right-hand side of (13) yields:

Pk+1|k+1 =
[
A11 + HT

e,k+1R
−1He,k+1 A12

AT
12 A22

]−1

(15)

Employing the properties of the Schur complement [ 27] for
the inversion of a partitioned matrix, in (15), we obtain

Pk+1|k+1,11 =
(
A11 + HT

e,k+1R
−1He,k+1 −A12A

−1
22 AT

12

)−1

=
((

Pk+1|k,11

)−1 + HT
e,k+1R

−1He,k+1

)−1

where in the second equality we used the Schur complement
for the inversion of the partitioned matrix Pk+1|k (cf. (14)).

The importance of this lemma is that both optimization
algorithms presented in Section V can be derived based on (11)
for the position covariance update – instead of (10) or (13) for
the whole state covariance update – regardless of the stochastic

process model employed for describing the target’s motion.
In the next section, we formulate the sensors’ one-step-

ahead optimal motion strategy as a constrained optimization
problem and show that it can be exactly reformulated as that of
minimizing the norm of the sum of a set of vectors of known
length with constraints imposed on their directions.

D. Problem Statement and Reformulation

As evident from (7)-(9) and (11), after each update step the
target’s position covariance matrix will depend on all the next
sensors’ positions pi(k + 1) = [xi(k + 1) yi(k + 1)]T, i =
1, . . . , M . Assuming that at time-step k, sensor-i is at location
pi(k) = [xi(k) yi(k)]T and moves with speed vi(k), at time-
step k + 1 its position will be:

xi(k + 1) = xi(k) + vi(k)δt cosϕi(k) (16)

yi(k + 1) = yi(k) + vi(k)δt sin ϕi(k) (17)

where ϕi(k) ∈ [0, 2π) is the heading direction of the sensor.
We thus see that given the current sensor positions, pi(k), the
covariance for the target’s position estimate after the update
(cf. (11)) is a function of the sensors’ speeds, vi(k), and
motion directions ϕi(k).

The problem we address in this work is that of determining
the sensors’ optimal motion strategy, i.e., the set C(k) =
{(vi(k), ϕi(k)) , i = 1, . . . , M}, that minimizes the trace of
the target’s position estimate covariance matrix. Based on the
following lemma, we first show that minimizing the trace of
the (posterior) covariance matrix requires optimization with
respect to the bearing directions of the sensors towards the
estimated position of the target, while the speed of each sensor
only affects the constraints imposed on this problem.

Lemma 2: The following two optimization problems are
equivalent:

• OPTIMIZATION PROBLEM 1 (Π1)

minimize
ϕ1(k),...,ϕM (k),v1(k),...,vM (k)

tr(Pk+1|k+1,11)

s.t. 0 ≤ vi(k) ≤ vimax ∀i = 1, . . . , M

• OPTIMIZATION PROBLEM 2 (Π2)

minimize
θ1(k+1),...,θM(k+1)

tr(Pk+1|k+1,11) (18)

s.t. |θi(k + 1)− θ
′
i(k)| ≤ ηimax(k) ∀i = 1, . . . , M

with2

ηimax(k) = arcsin

(
vimaxδt

d̂
′
i(k)

)
(19)

d̂
′
i(k) =

√
(x̂T (k + 1|k) − xi(k))2 + (ŷT (k + 1|k) − yi(k))2

(20)

θ
′
i(k) = Atan2(ŷT (k + 1|k) − yi(k), x̂T (k + 1|k) − xi(k))

(21)

where (cf. Fig. 3) d̂
′
i(k) and θ

′
i(k) are the distance and bearing

angle from the current location of sensor-i, p i(k), to the next
(predicted) position of the target p̂T (k + 1|k).

2Note that if d̂
′
i(k) < vimaxδt, then θi(k+1) ∈ [0, 2π), i.e., no constraint

is imposed on the bearing angle to the target. We hereafter consider the most
challenging case, when all bearing angles are constrained.
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p̂T (k+1|k)
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Fig. 3. Geometric interpretation of the bearing angle constraints: Since the
speed vi(k) of each sensor is bounded by vimax, the bearing angle θi(k+1)
is constrained in the interval [ θimin(k + 1), θimax(k + 1) ].

Proof: Since the measurement matrix He,k+1 (cf. (7)),
and hence the posterior covariance matrix (cf. (11)), has
an explicit form in terms of the bearing angles, θ i(k + 1),
towards the estimated target position, minimizing the trace
of the covariance matrix can be performed using the θ i(k +
1), i = 1, . . . , M , as the optimization variables, instead of the
heading direction, ϕi(k), or speed, vi(k), of each sensor. Note,
however, that although the variables {ϕ1(k), . . . , ϕM (k)} are
unconstrained, the bearing angles, {θ1(k+1), . . . , θM (k+1)},
are constrained by the fact that the speed, vi(k), of each sensor,
is bounded by vimax. Our objective here is to determine the
constraints on the new optimization variables θ i(k + 1) and
reveal their relation to vimax.

Consider the geometry of this problem shown in Fig. 3. At
time-step k, sensor-i is located at pi(k) = [xi(k) yi(k)]T and
predicts, based on the motion model (cf. (3)), that the target
will move to p̂T (k + 1|k) = [x̂T (k + 1|k) ŷT (k + 1|k)]T.
Assume that sensor-i moves with speed vi and reaches a point
pi(k + 1) = [xi(k + 1) yi(k + 1)]T located on a circle of
radius r = viδt, centered at its previous position pi(k) (cf.
Fig. 3, for vi = vimax), which does not include the target.
From point E (i.e., the target’s estimated location at time-step
k + 1, cf. Fig. 3), we draw two lines tangent to the circle
where sensor-i will move to. The two tangent points A and
B correspond to the two extreme values of the bearing angle
that define the constraints on θi(k + 1), i.e., θimin(k + 1) ≤
θi(k + 1) ≤ θimax(k + 1), with

θimin(k + 1) = θ
′
i(k)− ηi(k) (22)

θimax(k + 1) = θ
′
i(k) + ηi(k) (23)

ηi(k) = arcsin

(
vi(k)δt

d̂
′
i(k)

)
(24)

where (24) results from the sine relation in the right triangle
ADE, while (22) is derived from the relation for the external
to the triangle ACE angle θ

′
i(k) (note that (23) can be easily

derived in a similar manner based on the geometry of the
problem).

Since the inverse-sine function (cf. (24)) is monotonically
increasing within the interval of concern (0 < η i(k) < π/2),
the angle ηi(k) is maximized when r = rimax, which corre-
sponds to vi = vimax for sensors moving with bounded speed.
For ηi(k) = ηimax(k) (cf. (19)), the range of values of the
bearing angles θi(k +1) is maximized (i.e., the constraints on
the bearing angles are most relaxed), which leads to a smaller
or equal minimum value for the objective function (covariance
trace) compared to when ηi(k) < ηimax(k). Therefore, the
speeds of all sensors are set to their maximum values and
optimization is performed with respect to the bearing angles
θi(k + 1) within the constraints defined by (22) and (23).

Once the optimal value for the bearing angle, θ i(k + 1), of
sensor-i has been determined, its optimal heading directions,
ϕi(k) and ϕ′

i(k) (cf. Fig. 3), can be computed in closed form.

Corollary 1: Given the optimal bearing angle θ i(k + 1),
the optimal heading directions, ϕi(k) and ϕ′

i(k), of sensor-i
(cf. Fig. 3) are computed from the following relations:

ϕi(k) = θi(k + 1) + ξi(k) (25)

ϕ′
i(k) = θi(k + 1) + π − ξi(k) (26)

where

ξi(k) = arcsin
(

(ŷT (k + 1|k)− yi(k)) cos θi(k + 1)
vi(k)δt

(27)

− (x̂T (k + 1|k)− xi(k)) sin θi(k + 1)
vi(k)δt

)

Note that between these two equivalent solutions, sensor-i will
choose the one that brings it closer to the target so as to
increase the probability of re-detection later on.

Proof: The proof is described in Appendix A.

At this point, we should note that the preceding analysis is
not limited to the case of sensors moving with constant speed
during each time step. In fact, Lemma 2 can be directly applied
to any higher-order sensor motion model. For example, if a
second-order model with bounded acceleration a i(k) ≤ aimax

was used to describe the sensors’ motion, then maximizing
ηi(k), or equivalently r = vi(k)δt+ 1

2ai(k)δt2, would require
that the sensors move with maximum acceleration.

From here on, we turn our attention to determining the
optimal bearing angles to the estimated target position given
the constraints of Lemma 2. Before showing the final result
of this section, we first prove the following properties for the
objective function of the optimization problem.

Lemma 3: In the optimal target tracking problem using
distance-only measurements, minimizing the trace of the target
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position estimates’ covariance matrix is equivalent to:3

(i) maximizing the determinant of its inverse
(ii) maximizing the minimum eigenvalue of its inverse

(iii) minimizing the difference of its eigenvalues

minimize
θ1,...,θM

tr(Pk+1|k+1,11)

(i)⇔ maximize
θ̄1,...,θ̄M

det((Pk+1|k+1,11)−1)

(ii)⇔ maximize
θ̄1,...,θ̄M

μmin((Pk+1|k+1,11)−1)

(iii)⇔ minimize
θ̄1,...,θ̄M

(
μmax(Pk+1|k+1,11)− μmin(Pk+1|k+1,11)

)
where θ̄i = θi − θ0, i = 1, . . . , M , θ0 is a constant defined
from the 2 × 2 unitary (rotational) matrix appearing in the
singular value decomposition of Pk+1|k,11 (cf. (29) and (30)),
and μmin(·) and μmax(·) denote the minimum and the
maximum eigenvalues of their matrix arguments, respectively.

Proof: (i) Since Pk+1|k+1,11 is a 2×2 matrix, it is trivial
to prove that

tr(Pk+1|k+1,11) =
tr((Pk+1|k+1,11)−1)
det((Pk+1|k+1,11)−1)

(28)

Thus for completing the proof of (i), it suffices to compute
the inverse of the position covariance matrix Pk+1|k+1,11 and
show that its trace is constant.

Note that since the covariance matrix Pk+1|k for the state
estimates is positive semi-definite, so is the covariance matrix
Pk+1|k,11 of the target’s position estimates. The singular value
decomposition of (Pk+1|k,11)−1 yields:

(Pk+1|k,11)−1 = UΣ−1UT (29)

where Σ−1 = diag(μ′
1, μ

′
2), μ′

1 ≥ μ′
2 ≥ 0, and

U =
[
cos θ0 − sin θ0

sin θ0 cos θ0

]
with UUT = UTU = I2×2 (30)

Substituting (29) in the right-hand side of (11), we have:

Pk+1|k+1,11 = (UΣ−1UT + HT
e,k+1R

−1He,k+1)−1

= U(Σ−1 + HT
n,k+1R

−1Hn,k+1)−1UT

= UI−1UT

or equivalently

(Pk+1|k+1,11)−1 = UIUT (31)

where

Hn,k+1 = He,k+1U =
[
cos θ̄1 . . . cos θ̄M

sin θ̄1 . . . sin θ̄M

]T
with θ̄i = θi − θ0, i = 1, . . . , M , and

I =

[
μ′

1 +
∑M

i=1 σ−2
i cos2 θ̄i

∑M
i=1 σ−2

i cos θ̄i sin θ̄i∑M
i=1 σ−2

i cos θ̄i sin θ̄i μ′
2 +
∑M

i=1 σ−2
i sin2 θ̄i

]
(32)

3For clarity, from here on we drop the time indices from the bearing angles
θi(k + 1) and θ̄i(k + 1).

Substituting (32) in (31) and noting that similarity transfor-
mations do not change the trace of a matrix, yields

tr((Pk+1|k+1,11)−1) = tr(I) = μ′
1 + μ′

2 +
M∑
i=1

σ−2
i = c (33)

which is constant.
(ii) Let μ2 := μmin

(
(Pk+1|k+1,11)−1

) ≤ μ1 :=
μmax

(
(Pk+1|k+1,11)−1

)
, be the minimum and maximum

eigenvalues of the inverse covariance matrix for the position
estimates. Based on the relations

tr((Pk+1|k+1,11)−1) = μ1 + μ2 = c (34)

det((Pk+1|k+1,11)−1) = μ1μ2 (35)

we have

maximize det((Pk+1|k+1,11)−1) ⇔ maximize (μ1μ2)
⇔ minimize (−4μ1μ2) ⇔ minimize (c2 − 4μ1μ2)
⇔ minimize (μ1 − μ2)2 ⇔ minimize (μ1 − μ2)
⇔ minimize (2μ1 − c) ⇔ minimize (μ1)

(iii) Note that μmax(Pk+1|k+1,11) = 1
μ2

and
μmin(Pk+1|k+1,11) = 1

μ1
and (cf. (34))

minimize (
1
μ2
− 1

μ1
) ⇔ minimize

μ1 − μ2

μ1μ2

⇔ minimize
2μ1 − c

−μ2
1 + cμ1

However, this last quantity is a monotonically increasing func-
tion of μ1 within the interval of concern [c/2, c] (from (34),
it is μ2 ≤ c/2 ≤ μ1 ≤ c). Therefore, minimizing it is
equivalent to minimizing μ1 which, based on the result of (ii),
is equivalent to maximizing the determinant of the inverse
covariance matrix.

The key result of this section is described by the following
lemma.

Lemma 4: The optimal motions of a group of sensors
estimating the position of a moving target can be determined
by solving the following constrained optimization problem:

• OPTIMIZATION PROBLEM 3 (Π3)

minimize
θ̄1,...,θ̄M

∣∣∣∣∣
∣∣∣∣∣λ0 +

M∑
i=1

λi exp
(
j2θ̄i

)∣∣∣∣∣
∣∣∣∣∣
2

(36)

s.t. θ̄imin ≤ θ̄i ≤ θ̄imax, ∀i = 1, . . . , M (37)

with j =
√−1 and (cf. (29) and (30))

λ0 = μ′
1 − μ′

2 ≥ 0, λi = σ−2
i > 0, i = 1, . . . , M (38)

θ̄imin = θimin − θ0, θ̄imax = θimax − θ0

or equivalently:

minimize
θ̄1,...,θ̄M

∣∣∣∣∣
∣∣∣∣∣

M∑
i=0

vi

∣∣∣∣∣
∣∣∣∣∣
2

(39)

s.t. θ̄imin ≤ θ̄i ≤ θ̄imax, ∀i = 1, . . . , M (40)

with (for i = 1, . . . , M )

v0 = [λ0 0]T, vi = [λi cos 2θ̄i λi sin 2θ̄i]T
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Proof: We first note, that the constraints of (37) are the
same as the ones for the variables θi of the second optimization
problem in Lemma 2, transformed for the new variables
θ̄i = θi− θ0. To prove the equivalence between the objectives
functions in (36) and (18), we rely on the equivalence between
minimizing the trace of the covariance matrix and maximizing
the determinant of the inverse covariance matrix, shown in
Lemma 3, and proceed as follows.

Substituting (32) in (31), and employing the trigonometric
identities cos2 θ̄i = (1+cos 2θ̄i)/2, sin2 θ̄i = (1− cos 2θ̄i)/2,
cos θ̄i sin θ̄i = (sin 2θ̄i)/2 we have:

det((Pk+1|k+1,11)−1) = det(I) = dc − 1
4
dθ̄ (41)

where

dc = (μ′
1 +

1
2

M∑
i=1

σ−2
i )(μ′

2 +
1
2

M∑
i=1

σ−2
i ) +

1
4
(μ′

1 − μ′
2)

2

is constant, and

dθ̄ =

((
μ′

1 − μ′
2

)
+

M∑
i=1

σ−2
i cos 2θ̄i

)2

+

(
M∑

i=1

σ−2
i sin 2θ̄i

)2

=

∣∣∣∣∣
∣∣∣∣∣λ0 +

M∑
i=1

λi exp
(
j2θ̄i

)∣∣∣∣∣
∣∣∣∣∣
2

2

=

∣∣∣∣∣
∣∣∣∣∣

M∑
i=0

vi

∣∣∣∣∣
∣∣∣∣∣
2

2

(42)

From (41), we conclude that maximizing the determinant of
the inverse covariance matrix is equivalent to minimizing the
quantity dθ̄ , i.e., the norm of the sum of the vectors v i, i =
0, . . . , M .

We thus see that the original problem of minimizing the
trace of the covariance matrix of the target’s position estimate
(cf. Lemma 2) is exactly reformulated to that of minimizing
the norm of the sum of M + 1 vectors in 2D (cf. Lemma 4).
Note that although the vector v0 = [λ0 0]T remains constant
(affixed to the positive x semi-axis), each of the vectors
vi, i = 1, . . . , M , has fixed length λi but its direction can
vary under the constraints described by (37). This geometric
interpretation is depicted in Fig. 4.

IV. COMPUTATIONAL COMPLEXITY

We now analyze the complexity of the optimization problem
described in Lemma 4. The main result of this section is that
the problem of determining the optimal constrained motion
for a team of M > 1 mobile sensors tracking a moving target
using distance-only measurements is NP-Hard in general (cf.
Section IV-B).

Before considering the general case of multiple sensors,
however, we first focus on determining the optimal solution
when only a single sensor tracks the target. The main reason
for this is that the closed-form solution derived for this case
is extended and generalized to form the basis of the modified
Gauss-Seidel relaxation algorithm presented in Section V.

A. Single-sensor Target Tracking: Closed-form Solution

For M = 1, the optimization problem described by (36) is
simplified to:

minimize
θ̄1

‖λ0 + λ1 exp(j2θ̄1)‖2 ⇔ minimize
θ̄1

‖v0 + v1‖2

λ 2

λ 0

λ1

λ M

2v 1v

0

M

v

v

y

x

Fig. 4. Geometric interpretation of the optimal motion strategy problem: The
M +1 vectors shown have fixed lengths λi, i = 0, . . . , M . The vector v0 is
affixed to the positive x semi-axis, while the direction of each of the vectors
vi, i = 1, . . . , M , can change, within the interval denoted by the enclosing
dashed lines, based on the motion of the corresponding sensor. The objective
is to find the directions of the vectors vi, i = 1, . . . , M – directly related to
the optimal heading directions of the sensors – that minimize the Euclidean
norm of

∑M
i=0 vi.

s.t. θ̄1min ≤ θ̄1 ≤ θ̄1max

with v0 = λ0[1 0]T, and v1 = λ1[cos 2θ̄1 sin 2θ̄1]T.
This norm-minimization problem can be solved trivially by

maximizing the angle between the two vectors (i.e., setting
2θ̄1 as close to π as possible, while satisfying the constraints
on it). The closed-form solution for the optimal value is:

θ̄∗1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

nπ
2 if nπ

2 ∈
[
θ̄1min, θ̄1max

]
, n is odd

θ̄1min if nπ
2 /∈ [θ̄1min, θ̄1max

]
and

|nπ
2 − θ̄1min| ≤ |nπ

2 − θ̄1max|

θ̄1max otherwise

(43)

Once θ̄∗1 is determined, the optimal θ1 is computed as θ∗1 =
θ0 + θ̄∗1 .

Intuitively, the result of (43) can be explained as follows:
Recall that θ0 is the direction of the eigenvector u1 =
[cos θ0 sin θ0]T corresponding to the maximum eigenvalue,
μ′

1, of the prior information matrix (Pk+1|k,11)−1, while
(θ0 + π

2 ) is the direction of eigenvector u2 = [cos(θ0 +
π
2 ) sin(θ0 + π

2 )]T corresponding to the minimum eigenvalue,
μ′

2, of (Pk+1|k,11)−1 (cf. (29) and (30)). When only one sensor
is available, it should always move so as the new measurement
contributes information along (or as close as possible to) the
direction where the least information is available. This is best
achieved when θ̄∗1 = π

2 and hence θ∗
1 = θ0 + π

2 .
Interestingly, the minimization of the trace of the covariance

matrix for the case of a single sensor can also be shown
to be exactly equivalent to the maximization of the resulting
Rayleigh quotient. The proof is described in Appendix B.

At this point, we should note that the solution described
by (43) for one sensor can be adapted and generalized to
determine the motion of multiple sensors. In such case, the ob-
jective function (cf. (36)) will be sequentially minimized over
each variable θ̄i separately, while considering the remaining
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Fig. 5. Illustration of non-convexity: A simple scenario in which 2
sensors track a target. We plot the trace of the posterior covariance matrix,
Pk+1|k+1,11, of the target’s position estimates for the following values of
the sensors’ bearing directions: (θ1(k), θ2(k)) ∈ [θ1min, θ1max] ×
[θ2min, θ2max] = [ 3

5
π, π] × [ 2

5
π, 7

6
π]. Note that the bearing directions’

intervals are determined based on the sensors’ motion constraints. The sensors’
speed is set to v1 = v2 = 6 m/sec, the time step is δt = 1 sec, their
current positions are given by p1(k) = [8,−6]T, and p2(k) = [5,−4]T,
the covariance of the range measurements is R = 2I2×2, the estimated target
position is p̂T (k+1|k) = [0, 0]T and the prior position estimates’ covariance
matrix is Pk+1|k,11 = 5I2×2.

bearings (i.e., θ̄j , j 
= i) as constant during that step. In fact,
our modified Gauss-Seidel relaxation algorithm follows this
idea and its solution at each iteration has similar closed form
as (43).

B. Multi-sensor Target Tracking: NP-Hardness

The objective function in (18), and equivalently in (36), is
non-convex in the optimization variables θ̄i, i = 1, . . . , M .
This is clearly demonstrated in Fig. 5 for M = 2, where
the trace of the posterior covariance matrix is plotted against
the possible values of the two sensors’ bearing directions.
More importantly, in this section we show that the problem
of determining the optimal constrained motion of multiple
sensors tracking a moving target with range measurements,
is NP-Hard in general (cf. Theorem 1).

We proceed by first considering the following well-known
NP-Complete problem [28, Ch. 3],

• PARTITION PROBLEM

Given M positive integers λ1, . . . , λM , determine
whether there exist ζi ∈ {−1, +1}, i = 1, . . . , M , such
that

∑M
i=1 λiζi = 0.

and
• OPTIMIZATION PROBLEM 3

′
(Π

′
3)

minimize
θ̄1,...,θ̄M

⎛⎝( M∑
i=1

λi cos 2θ̄i

)2

+

(
M∑

i=1

λi sin 2θ̄i

)2
⎞⎠ 1

2

(44)

s.t. 0 ≤ θ̄i ≤ π/2,∀i = 1, . . . , M (45)

λi ∈ Z
+,∀i = 1, . . . , M

which is an instance of optimization problem Π3 described
by (36)-(37), for λ0 = 0, θ̄imin = 0, θ̄imax = π/2 and λi ∈
Z+.

Proving by restriction [28, Ch. 3] that Π3 is NP-Hard, in
general, requires to show that solving4 Π

′
3, which is a special

case of Π3, is equivalent to solving the partition problem.
Since the partition problem is NP-Complete, it will follow
that the general problem Π3 is at least as hard as that, i.e.,
Π3 is NP-Hard. We first prove that the answer to the partition
problem is positive (“yes”), if and only if Π

′
3 achieves optimal

value of zero.

Lemma 5: For positive integers λ1, . . . , λM , there exist
ζi ∈ {−1, +1}, i = 1, . . . , M , such that

∑M
i=1 λiζi = 0, if

and only if, the optimal value of Π
′
3 is 0.

Proof:

(Necessary): Assume ∃ ζi ∈ {−1, +1}, i = 1, . . . , M , such
that

M∑
i=1

λiζi = 0 (46)

Based on these, consider the following choice of θ̄i for Π
′
3

θ̄∗i =
{

0 if ζi = 1
π/2 if ζi = −1 (47)

Note that θ̄∗i , i = 1, . . . , M , satisfies the constraints of Π
′
3

(cf. (45)). Additionally, it is easy to verify that cos 2 θ̄∗i = ζi

and sin 2θ̄∗i = 0, ∀i = 1, . . . , M . Substituting in the objective
function (squared) of Π

′
3 (cf. (44)) yields(

M∑
i=1

λi cos 2θ̄∗i

)2

+

(
M∑
i=1

λi sin 2θ̄∗i

)2

=

(
M∑
i=1

λiζi

)2

= 0

where the last equality follows from (46).

Since the objective function of Π
′
3 is always nonnegative

and the choice of θ̄∗i (cf. (47)) based on ζi achieves zero, the
set {θ̄∗i , i = 1, . . . , M} is the optimal solution of Π

′
3.

(Sufficient): Suppose ∃ θ̄∗i , with 0 ≤ θ̄∗i ≤ π/2, ∀i =
1, . . . , M , and⎛⎝( M∑

i=1

λi cos 2θ̄∗i

)2

+

(
M∑
i=1

λi sin 2θ̄∗i

)2
⎞⎠

1
2

= 0 (48)

This last equality for the objective function of Π
′
3 requires

M∑
i=1

λi sin 2θ̄∗i = 0 and (49)

M∑
i=1

λi cos 2θ̄∗i = 0 (50)

Note that the constraints on θ̄i (cf. (45)) imply that
sin 2θ̄∗i ≥ 0, ∀i = 1, . . . , M . Additionally, since λi > 0,
it follows from (49) that sin 2θ̄∗i = 0 ⇒ cos 2θ̄∗i = ±1,
∀i = 1, . . . , M . Thus, there exist ζi = cos 2θ̄∗i ∈ {−1, +1},
such that

∑M
i=1 λiζi =

∑M
i=1 λi cos 2θ̄∗i = 0 (cf. (50)).

Lemma 5, establishes a one-to-one correspondence between

4Here “solve” means to find the global optimal solution and the optimal
value.
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every instance5 of Π
′
3 and that of the partition problem. In

particular, if we are able to solve the optimization problem
Π

′
3, then by examining its optimal value, we can answer

the partition problem, i.e., zero (vs. positive) optimal value
for the objective function of Π

′
3 corresponds to positive (vs.

negative) answer to the partition problem. Based on the result
of Lemma 5, we hereafter state and prove the main result of
this section.

Theorem 1: The problem of determining the optimal con-
strained motion of a team of mobile sensors tracking a
moving target using distance-only measurements is NP-Hard
in general.

Proof: Assume that the general problem Π3 is not NP-
Hard. Then there exists a polynomial-time algorithm that can
solve all instances of Π3, and hence Π

′
3. From Lemma 5,

however, the answer to the partition problem can be deter-
mined based on the optimal value of Π

′
3. This implies that the

partition problem can be solved in polynomial time, which is
a contradiction.

V. PROBLEM SOLUTION

As shown in the previous section, the problem of opti-
mal trajectory generation for multiple sensors with mobil-
ity constraints that track a moving target using range-only
measurements is NP-Hard in general. Hence, finding the
global optimal solution for the original optimization problem,
or for its equivalent formulations (cf. Π1 ⇔ Π2 ⇔ Π3),
becomes extremely difficult. Ideally, the optimal solution can
be determined if one discretizes the space of possible heading
directions of all sensors and performs an exhaustive search.
This approach, however, has computational complexity expo-
nential in the number of sensors which is of limited practical
use given realistic processing constraints.

In order to design algorithms that can operate in real time,
appropriate relaxations of the original optimization problem
become necessary. In the next two sections, we present two
methods for solving the problem under consideration, namely
modified Gauss-Seidel relaxation and LP Relaxation. Both al-
gorithms have computational complexity linear in the number
of sensors, which ensures real-time implementations even for a
large number of sensors. Furthermore, as shown in Section VI,
they both achieve tracking accuracy indistinguishable of that
of exhaustive search.

A. Modified Gauss-Seidel Relaxation

Motivated by the simplicity of the closed-form solution for
the case of one sensor (cf. Section IV-A), a straightforward
approach to finding a minimum of the optimization problem
Π3 would be to iteratively minimize its objective function
(cf. (36)) for each optimization variable separately, i.e., [29,
Ch. 3]
• NONLINEAR GAUSS-SEIDEL ALGORITHM

min.
θ̄
(�+1)
i

∥∥∥∥∥λ0 +
i−1∑
κ=1

(
λκ exp

(
j2θ̄(�+1)

κ

))
5Note that the parameters for both the partition problem and the optimiza-

tion problem Π
′
3 are λ1, . . . , λM . An instance of these two problems is

obtained by specifying particular values for λ1, . . . , λM .

2θ1

2θ 2

v2

v1 v0

v1

v2

v02θ1

2θ 2

v0
2θ1

2θ 2

v2

v1

Fig. 6. Norm minimization example for the sum of the vectors with norms
||v0||2 =

√
2, ||v1||2 = ||v2||2 = 1. The direction of v0 is fixed while the

directions of v1 and v2 are the optimization variables. (Top) Initial vector
directions: 2θ̄1 = π and 2θ̄2 = −5π/6. (Middle) Final vector directions com-
puted by the nonlinear Gauss-Seidel algorithm: 2̄θ1 = −2θ̄2 = 3.1416 = π.
The norm of the sum in this case is (2 −√

2) which corresponds to a local
minimum. (Bottom) Final vector directions computed by the modified Gauss-
Seidel relaxation algorithm: 2θ̄1 = −2θ̄2 = 2.3562 = 3π/4. The norm of
the sum in this case is 0 which corresponds to the global minimum.

+
M∑

κ=i+1

(
λκ exp

(
j2θ̄(�)

κ

))
+ λi exp

(
j2θ̄

(�+1)
i

)∥∥∥∥∥
2

s.t. θ̄imin ≤ θ̄
(�+1)
i ≤ θ̄imax

where θ̄
(�+1)
i is the new optimal value of θ̄i, θ̄

(�+1)
κ , κ =

1, . . . , i − 1, and θ̄
(�)
κ , κ = i + 1, . . . , M , are the remaining

vector directions, considered fixed during this step, computed
sequentially during the previous iterations.

However, it is easy to demonstrate that this sequential
gradient-based approach is prone to being trapped in local
minima. For example, consider the simple case of two sensors,
with no constraints imposed on θ̄i, i = 1, 2. For λ0 =

√
2,

λ1 = λ2 = 1, and initial bearing directions 2θ̄1 = π,
2θ̄2 = −5π/6 (cf. Fig. 6), the optimal values after the first
3 iterations are:

Initial Condition : 2θ̄2 = −2.6180, 2θ̄1 = 3.1416
1st Iteration : 2θ̄2 = 3.1416, 2θ̄1 = −3.1416

2nd Iteration : 2θ̄2 = −3.1416, 2θ̄1 = 3.1416
3rd Iteration : 2θ̄2 = −3.1416, 2θ̄1 = 3.1416

As evident this algorithm converges to a local minimum
2θ̄1 = −2θ̄2 = 3.1416 = π. The objective function value in
this case is (2 − √2), while the true global minimum is 0,
obtained for 2θ̄1 = −2θ̄2 = 3π/4.

To overcome this limitation, we propose the following



11

modification:
• MODIFIED GAUSS-SEIDEL RELAXATION

min.
θ̄
(�+1)
i

∥∥∥∥∥λ0 +

i−1∑
κ=1

(
λκ exp

(
j2θ̄(�+1)

κ

))
+

M∑
κ=i+1

(
λκ exp

(
j2θ̄(�)

κ

))
+ λi exp

(
j2θ̄

(�+1)
i

)
+ vM+1

∥∥∥∥∥
2

s.t. θ̄imin ≤ θ̄
(�+1)
i ≤ θ̄imax (51)

with vM+1 := −α

(
λ0 +

i−1∑
κ=1

(
λκ exp

(
j2θ̄(�+1)

κ

))
+

M∑
κ=i

(
λκ exp

(
j2θ̄(�)

κ

)))
(52)

where we have introduced the perturbation vector vM+1,
which is proportional to the sum of the vectors computed in
the previous iteration. The parameter α ∈ [0, 1] is termed the
relaxation factor. When α = 0, this method becomes identical
with the nonlinear Gauss-Seidel algorithm, while for α = 1,
it results in θ̄

(�+1)
i = θ̄

(�)
i , i = 1, . . . , M , and therefore the

solution does not change between iterations. We thus see that
the perturbation vector vM+1 reduces the convergence rate of
the modified Gauss-Seidel relaxation algorithm by smoothing
the cost function. This makes the algorithm less sensitive
to local minima at the expense of increasing the number of
iterations required to converge.

This is demonstrated for the previously mentioned two-
sensor example (cf. Fig. 6). In this case, the optimal values
computed by the modified Gauss-Seidel relaxation algorithm
are:

Initial Condition : 2θ̄2 = −2.6180, 2θ̄1 = 3.1416
1st Iteration : 2θ̄2 = −2.3625, 2θ̄1 = 2.4927

. . . . . . . . .

4th Iteration : 2θ̄2 = −2.3562, 2θ̄1 = 2.3563
5th Iteration : 2θ̄2 = −2.3562, 2θ̄1 = 2.3562

Noting that 2.3562 = 3π/4, we see that the modified Gauss-
Seidel relaxation method returns the global minimum.

The optimization process in the modified Gauss-Seidel
relaxation algorithm is carried out only for one variable (i.e.,
θ̄i) at every step using a similar closed-form solution as the
one used in the single-sensor case (cf. Section IV-A). Thus, the
modified Gauss-Seidel relaxation process has computational
complexity, per iteration step, only linear in the number
of sensors. Furthermore, it is easily implemented, has low
memory requirements and, as demonstrated in Section VI, it
achieves the same level of positioning accuracy as the exhaus-
tive search approach. For clarity, we present the basic steps of
the modified Gauss-Seidel relaxation process in Algorithm 1.

B. Linear Programming (LP) Relaxation

In this section, an alternative relaxation is introduced that
leads to the formulation of a Linear Programming (LP) algo-
rithm for solving the constrained optimal motion generation
problem.

We start by defining the following problem:

Algorithm 1 Modified Gauss-Seidel Relaxation Algorithm

Require: θ̄0
i = θ̄i(k), i = 1 : M , α ∈ [0, 1]

Ensure: θ̄i(k + 1) = θ̄
(�+1)
i , i = 1 : M {Minimize (36)}

1: repeat
2: Calculate vM+1 from (52)
3: for i = 1 : M do
4: Determine θ̄

(�+1)
i from (51)

5: θ̄
(�)
i ← θ̄

(�+1)
i {Update θ̄i}

6: Update vM+1 from (52)
7: end for
8: until max. number of iterations is reached or change in

the objective function is less than 1%

• OPTIMIZATION PROBLEM 4 (Π4)

maximize
θ̄1,...,θ̄M

μmin(I) (53)

s.t. θ̄imin ≤ θ̄i ≤ θ̄imax, ∀i = 1, . . . , M

with I defined in (32), which (cf. Lemma 3) is exactly
equivalent to the optimization problems Π1−Π3, and proceed
to show the remaining of the following relations:6

Π1 ⇔ Π2 ⇔ Π3 ⇔ Π4 ⇔ Π5 ← Π6 ← Π7 ⇔ Π8 ⇔ Π9

where Πi ← Πj denotes that the optimization problem Πj

is a relaxation of Πi, i.e., the feasible set of Πi is a subset
of that of Πj . The NP-Hard problem Π5, the Semi-Definite
Programming (SDP) problems Π6 −Π8, and the LP problem
Π9 whose solution is the basis of the LP relaxation algorithm,
are defined hereafter.

Lemma 6: The optimization problems Π4 and Π5 are equiv-
alent, where

• OPTIMIZATION PROBLEM 5 (Π5)

maximize β (54)

s.t. Σ−1 +
M∑
i=1

λiXi − βI2×2 � 0 (55)

Xi =
[
xi zi

zi yi

]
� 0, ∀i = 1, . . . , M (56)

rank(Xi) = 1, ∀i = 1, . . . , M (57)

tr(Xi) = 1, ∀i = 1, . . . , M (58)

X
(l)
i,11 ≤ xi ≤ X

(r)
i,11, ∀i = 1, . . . , M (59)

cos 2ηimax

2
≤
[
cos 2θ̌i

sin 2θ̌i

]T [
xi − 1/2

zi

]
≤ 1

2
,

∀i = 1, . . . , M (60)

with ηimax and Σ−1 defined in (19) and (29) respectively,

θ̌i := (θ̄imin + θ̄imax)/2 (61)

X
(l)
i,11 := min

θ̄i∈[θ̄imin,θ̄imax]
cos2 θ̄i (62)

X
(r)
i,11 := max

θ̄i∈[θ̄imin,θ̄imax]
cos2 θ̄i (63)

6Note that the equivalence relations between the previously defined opti-
mization problems Π1−Π4 has already been established based on the results
of Lemmas 2, 3, and 4.
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Proof: The proof proceeds in four steps.
(i) Modification of the objective function and introduction

of constraint (55): Since μmin(I) ≥ β ⇔ I � βI2×2, where
“�” denotes that I−βI2×2 is positive semi-definite, it follows
that

maximize μmin(I)⇔ maximize β

s.t. I − βI2×2 � 0 (64)

Defining

Xi :=
[

cos2 θ̄i cos θ̄i sin θ̄i

cos θ̄i sin θ̄i sin2 θ̄i

]
, i = 1, . . . , M (65)

and substituting in (32), yields

I = Σ−1 +
M∑
i=1

λiXi (66)

with λi := σ−2
i . Finally, substituting (66) in (64) results in the

constraint (55).
(ii) Constraints (56)-(58): From (65), it is evident that Xi

has the following properties:

Xi � 0, rank(Xi) = 1, and tr(Xi) = 1 (67)

Conversely, it is easy to show that any 2 × 2 matrix Xi

satisfying the above constraints can be written in the form
of (65). Hence, we conclude that requiring a matrix X i to be
of the form of (65) is equivalent to Xi satisfying the constraints
in (56)-(58).

(iii) Constraint (59): This is a direct result of the constraint
θ̄imin ≤ θ̄i ≤ θ̄imax and the definition xi := cos2 θ̄i.

(iv) Constraint (60): Since zi := cos θ̄i sin θ̄i = (sin 2θ̄i)/2
and xi := cos2 θ̄i = (1 + cos 2θ̄i)/2, the constraint on zi

could be determined based on the constraint (59) on xi and
the trigonometric relation (sin 2θ̄i)2 + (cos 2θ̄i)2 = (2zi)2 +
(2xi − 1)2 = 1 between xi and zi. However, this would
result in two feasible regions for zi and complicate the process
of recovering θ̄i. Instead, we hereafter determine a linear
inequality constraint on zi based on xi.

Substituting (56) and (65) in the following relation, yields

2
[
cos 2θ̌i

sin 2θ̌i

]T [
xi − 1/2

zi

]
= cos 2(θ̄i − θ̌i) (68)

with θ̌i defined in (61).
Our objective now is to determine the range of feasible

values of cos 2|θ̄i − θ̌i|. Subtracting (22) from (23), we have

ηimax =
θ̄imax − θ̄imin

2
= θ̌i − θ̄imin = θ̄imax − θ̌i

⇒ θ̄imin = θ̌i − ηimax , θ̄imax = θ̌i + ηimax (69)

Substituting these last two relations on both sides of the
inequality θ̄imin ≤ θ̄i ≤ θ̄imax and rearranging terms, yields

0 ≤ |θ̄i − θ̌i| ≤ ηimax ≤ π/2 (70)

where the right-most inequality is due to the geometry of the
problem (cf. Fig. 3). Since the cosine function is monotoni-
cally decreasing within the interval [0, π], from (70), we have

0 ≤ 2|θ̄i − θ̌i| ≤ 2ηimax ≤ π

cos 2ηimax ≤ cos 2|θ̄i − θ̌i| ≤ 1 (71)

Noting that cos 2|θ̄i − θ̌i| = cos 2(θ̄i − θ̌i) and substituting
the left hand-side of (68) in (71), results in the affine con-
straint (60).

Note that based on the equivalence relation of Lemma 6,
Π5 has the same computational complexity as Π1 − Π4 and
thus it cannot be solved in polynomial time. In order to
devise an efficient algorithm that will support a real-time
implementation, we need to modify Π5 so that it becomes
convex. Dropping the rank constraints in (57), yields the
following relaxed version of Π5:

• SDP OPTIMIZATION PROBLEM 6 (Π6)

maximize β (72)

s.t. Σ−1 +
M∑
i=1

λiXi − βI2×2 � 0

Xi � 0, ∀i = 1, . . . , M

tr(Xi) = 1, ∀i = 1, . . . , M

X
(l)
i,11 ≤ xi ≤ X

(r)
i,11, ∀i = 1, . . . , M

cos 2ηimax

2
≤
[
cos 2θ̌i

sin 2θ̌i

]T [
xi − 1/2

zi

]
≤ 1

2
,

∀i = 1, . . . , M

It is clear that Π6 is a relaxation of Π5 because the feasible
set of Π5 is a subset of that of Π6. Moreover, with respect to
the variables Xi, i = 1, . . . , M , and β, Π6 is an SDP problem
which can be solved using a polynomial-time algorithm [30,
Ch. 4]. However, solving Π6 requires computations at least
in the order of O(M 3) [30, Ch. 11], which makes real-time
implementations prohibitive when M is large (note that this
solution approach is not considered in the results shown in
Section VI). In order to further reduce the computational
complexity, we make a second modification to Π5 by dropping
the constraints in (57) and (60) simultaneously, to obtain the
following relaxed version of Π5:

• SDP OPTIMIZATION PROBLEM 7 (Π7)

maximize β (73)

s.t. Σ−1 +
M∑
i=1

λiXi − βI2×2 � 0 (74)

Xi � 0, ∀i = 1, . . . , M

tr(Xi) = 1, ∀i = 1, . . . , M

X
(l)
i,11 ≤ xi ≤ X

(r)
i,11, ∀i = 1, . . . , M

Note again, that the feasible sets of Π5 and Π6 are subsets of
that of Π7, hence Π7 is a relaxation of both Π5 and Π6.

Although Π7 is also an SDP problem, we will show that
it is exactly equivalent to an LP problem whose solution has
computational complexity linear in the number of sensors. We
proceed by first proving the following lemma:

Lemma 7: The SDP optimization problems Π7 and Π8 are
equivalent in the optimal value, where

• SDP OPTIMIZATION PROBLEM 8 (Π8)

maximize β (75)
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s.t. Σ−1 +
M∑
i=1

λiXi − βI2×2 � 0 (76)

Xi � 0, ∀i = 1, . . . , M (77)

tr(Xi) = 1, ∀i = 1, . . . , M (78)

X
(l)
i,11 ≤ xi ≤ X

(r)
i,11, ∀i = 1, . . . , M

zi = 0, ∀i = 1, . . . , M (79)

Proof: In order to prove the equivalence of Π7 and Π8,
it suffices to show that both problems have the same optimal
value. Denoting as β∗

7 and β∗
8 the optimal values of Π7 and Π8

respectively, we will prove the equality β∗
7 = β∗

8 by showing
that β∗

8 ≤ β∗
7 and β∗

7 ≤ β∗
8 .

(i) β∗
8 ≤ β∗

7 : Note that the feasible set of Π8 is contained in
that of Π7 and both problems have the same objective function;
hence β∗

8 ≤ β∗
7 .

(ii) β∗
7 ≤ β∗

8 : We denote as {X∗
1 , . . . , X∗

M} one of the
optimal solution(s) corresponding to Π7, and define:

C∗ := Σ−1 +
M∑
i=1

λiX
∗
i =

[
a∗ b∗

b∗ d∗

]
� β∗

7I2×2

where the last inequality follows from optimality and the
constraint (74), and yields

β∗
7 ≤ min{a∗, d∗} (80)

We further define as

X
′
i := diag(X∗

i ) , i = 1, . . . , M

C
′

:= Σ−1 +
M∑
i=1

λiX
′
i =
[
a∗ 0
0 d∗

]
β

′
8 := max β (81)

s.t. C
′ − βI2×2 � 0

where from (81), it is evident that

β
′
8 = min{a∗, d∗} (82)

Furthermore, note that X
′
i satisfies all constraints of Π8

(i.e., {X ′
i , i = 1, 2, . . . , M} is in the feasible set of Π8), and

therefore

β
′
8 ≤ β∗

8 (83)

Combining (80), (82), and (83), we have:
β∗

7 ≤ min{a∗, d∗} = β
′
8 ≤ β∗

8 .
The final result of this section is provided by the following

lemma.
Lemma 8: The SDP optimization problem Π8 is equivalent

to the Linear Programming (LP) problem Π9, where
• LP OPTIMIZATION PROBLEM 9 (Π9)

maximize β (84)

s.t. μ′
1 +

M∑
i=1

λixi − β ≥ 0 (85)

μ′
2 +

M∑
i=1

λi −
M∑
i=1

λixi − β ≥ 0 (86)

X
(l)
i,11 ≤ xi ≤ X

(r)
i,11 ∀i = 1, . . . , M (87)

with μ′
1 and μ′

2 defined in (29).
Proof: Note that in the formulation of the SDP problem

Π8, the off-diagonal constraints (79) are satisfied by forcing
all matrices Xi to become diagonal. Hence the linear matrix
inequality constraint in (76) can be decomposed into the
following two linear scalar inequalities:

μ′
1 +

M∑
i=1

λixi − β ≥ 0 (88)

μ′
2 +

M∑
i=1

λiyi − β ≥ 0 (89)

where (88) is the same as the constraint in (85). Additionally,
solving for yi from the constraint tr(Xi) = xi + yi = 1
(cf. (78)), and substituting in (89), yields the constraint (86).

Finally, from the definitions of X
(l)
i,11 and X

(r)
i,11 (cf. (62)

and (63)), it is evident that the constraint in (87) makes the
one in (77) redundant.

The LP problem Π9, which is a relaxation of the NP-Hard
problems Π1 ⇔ . . . ⇔ Π5, can be solved efficiently using
linprog from MATLAB� [31]. Note also that the relaxations
employed for deriving Π9 do not affect the feasibility of the
solution (i.e., any solution of Π9 is within the feasible set
of Π5). Once the optimal solution x∗

i , i = 1, . . . , M of Π9 is
computed, the optimal bearing directions θ̄∗i , i = 1, . . . , M are
calculated from cos2 θ̄∗i = x∗

i (cf. (56) and (65)). If multiple
solutions exist for θ̄∗i , we choose the one that brings the sensor
closer to the target.

Finally, we should note that although the computational cost
for solving an LP problem can be in the order of O(M 3), it
can be shown that the solution of Π9 requires only O(M)
operations (i.e., linear in the number of sensors) due to
the special structure of the matrices involved. The proof is
described in Appendix C.

VI. SIMULATION RESULTS

In order to evaluate the two presented constrained optimal
motion strategies, Modified Gauss-Seidel Relaxation (MGSR)
and LP Relaxation (LPR), we have conducted extensive sim-
ulation experiments and compared the performance of MGSR
and LPR to the following methods:
• Grid-Based Exhaustive Search (GBES). In this case, we

discretize the space of the sensors’ heading directions and
perform an exhaustive search over all possible combinations of
these to find the one that minimizes the trace of the covariance
matrix for the target’s position estimates. Ideally, the GBES
should return the global optimal solution and it could be used
as a benchmark for evaluating the MGSR and the LPR, if
the grid size is sufficiently small. However, this is difficult
to guarantee in practice since its computational complexity
and memory requirements are exponential in the number of
sensors. Hence implementing the GBES becomes prohibitive
when the number of sensors, M , increases and/or when the
size of the grid cells decreases.
• Random Motion (RM). This is a modification of an

intuitive strategy that would require the sensors to move
towards the target. In this case, however, and in order to ensure



14

that the sensors do not converge to the same point (i.e., zero
baseline), we require that at every time step sensor-i selects
its heading direction with uniform probability towards points
within the arc ACB shown in Fig. 3, i.e., each sensor is
required to move towards the target at a random angle.
• Gradient Descent with Constant step-size (GDC). In [24],

the authors considered the case where distance-only measure-
ments are available and implemented the gradient descent
algorithm with a constant step-size. However, no motion
constraints were imposed on the sensors. To overcome this
limitation, instead of using the bearings, we chose the head-
ings of the sensors as the optimization variables (which are
unconstrained) and implemented the GDC algorithm on the
reformulated unconstrained optimization problem.
• Gradient Descent with Successive step-size reduction

(GDS). In order to improve the performance of the GDC,
and avoid the difficulty of selecting the optimal constant step-
size, we also implemented the gradient descent method with
successive step-size reduction. In this case, the step size was
selected using backtracking line search (i.e., Armijo’s rule, [32,
Ch. 1], [30, Ch. 9]). The procedure to calculate the gradient
descent direction and the algorithms to select the step-size are
described in Appendix D.

A. Simulation Setup

For the purposes of this simulation, we adopt a zero-
acceleration target motion model

ẋT (t) = F xT (t) + G w(t) (90)

where

F =

⎡⎢⎢⎣
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ , G =

⎡⎢⎢⎣
0 0
0 0
1 0
0 1

⎤⎥⎥⎦ , xT (t) =

⎡⎢⎢⎣
xT (t)
yT (t)
ẋT (t)
ẏT (t)

⎤⎥⎥⎦ ,

and w(t) = [wx(t) wy(t)]T is a zero-mean white Gaussian
noise vector with covariance E

[
w(t)wT(τ)

]
= qI2δ(t − τ),

q = 10, and δ(t−τ) is the Dirac delta. In our implementation,
we discretize the continuous-time system model (cf. (90)) with
time step δt = 0.1 sec.

The initial true state of the target is xT (0) = [0, 0,−8, 4]T.
The initial estimate for the target’s state is x̂T (0) =
[2,−2, 0, 0]T. This can be obtained by processing the first
measurements from the sensors at time-step 0. At the begin-
ning of the experiment, the sensors are randomly distributed
within a circle of radius 5 m, which is at a distance of about
20 m from the target’s initial position. The maximum speed
for each sensor is set to 10 m/s, i.e., the largest distance that a
sensor can travel during any time step is 1 m. The duration of
the simulations is 10 sec (i.e., 100 time steps). At every time
step, we employ the methods described (i.e., GBES, MGSR,
LPR, RM, GDC and GDS) to calculate the next heading
direction of each sensor. Throughout the simulations, we set
the grid size for the GBES method to π/200 and the relaxation
factor for the MGSR strategy to α = 0.5.
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Fig. 7. [2-Sensors case] Trace of the target’s position covariance matrix.
Comparison between GBES, MGSR, LPR, RM, GDC, and GDS.
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Fig. 8. [2-Sensors case, Monte Carlo simulations] Average trace of the
target’s position covariance matrix in 100 experiments.

B. Target Tracking with 2 Sensors (homogeneous team)

We first investigate the scenario where 2 identical sensors
track a moving target, i.e., the covariance matrix of the noise
in the distance measurements is R = σ2I2×2 with σ = 1.

The time evolution of the trace of the target’s position
covariance in a typical simulation is shown in Fig. 7. As
expected, the performance of any of the optimized approaches
(i.e., MGSR, LPR, GBES, and GDS) is significantly better
compared to that of the non-optimized cases (i.e., RM and
GDC). Additionally, the uncertainty in the target’s position
estimates (trace of the covariance matrix) achieved by either
of the two proposed motion strategies, MGSR and LPR,
is indistinguishable of that of the GBES, at a cost linear,
instead of exponential, in the number of sensors. Note also
that although the GDS algorithm performs significantly better
than the GDC, it is approximately 50-100% worse when
compared to the MGSR and LPR optimal motion strategies.
This indicates that the GDS is trapped in a local minimum.
These results are typical for all experiments conducted and are
summarized, for the average of 100 trials, in Fig. 8.

Fig.s 10(a), 10(b), 10(c), 10(d), 10(e), and 10(f), depict
the actual and estimated trajectories of the target, along
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Fig. 10. [2-Sensors case] Trajectories of the two sensors, and the actual and estimated trajectories of the target, when employing as motion strategy (a) MGSR,
(b) LPR, (c) GBES, (d) RM, (e) GDC, and (f) GDS. The ellipses denote the 3σ bounds for the target’s position uncertainty at the corresponding time steps.
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Fig. 9. [2-Sensors case] The angle formed by sensor-1, the target, and
sensor-2 vs. time. As time increases this angle approaches 90 degrees.

with the trajectories of the two sensors, when employing as
motion strategy MGSR, LPR, GBES, RM, GDC, and GDS,
respectively. As evident, the accuracy of the target’s position
estimates for both MGSR and LPR are significantly better than
the case of RM, GDC, and GDS, and almost identical to that
of GBES. Additionally, for both MGSR and LPR, the EKF
produces consistent estimates, i.e., the real target’s position
is within the 3σ ellipse centered at the target’s estimated
position. This is not the case for the RM strategy where the
inconsistency is due to the large errors in the state estimates
used for approximating the measurement Jacobian.

Note also that for both MGSR and LPR (cf. Fig.s 10(a)
and 10(b)), although the two sensors start close to each other,
they immediately move in separate directions and eventually
form a right angle with vertex the location of the target
(cf. Fig. 9). This interesting result is explained as follows:
Based on Lemma 3, the optimal motion strategy for the two
sensors minimizes the difference between the maximum and
the minimum eigenvalue of the covariance matrix. Once this
difference approaches zero, the eigenvalues of the prior co-
variance matrix are almost identical and the uncertainty ellipse
becomes a circle. In this case, for M = 2 we have (cf. (38)):
λ0 = μ′

1 − μ′
2 � 0, λ1 = λ2 = 1/σ2 = 1, v0 � [0 0]T,

v1 = [cos 2θ̄1 sin 2θ̄1]T, and v2 = [cos 2θ̄2 sin 2θ̄2]T.
Hence the optimal solution to (39) is |θ̄2 − θ̄1| � π/2, which
requires that the two sensors should move so as to measure
their distances to the target from perpendicular directions.

C. Target Tracking with 4 Sensors (heterogeneous team)

We hereafter examine the performance of the MGSR and
LPR motion strategies for a heterogeneous team of 4 sensors
tracking a moving target. In this case, the covariance matrix of
the noise in the distance measurements is set to R = diag(σ2

i ),
with σ2

1 = 1 and σ2
2 = σ2

3 = σ2
4 = 3.

Fig.s 11(a), 11(b), 11(c), and 11(d) depict the actual and
estimated trajectories of the target, along with the trajectories
of the four sensors, when employing as motion strategy
MGSR, LPR, GBES, and RM, respectively. As for the case of
2 sensors, the accuracy of the target’s position estimates for
both MGSR and LPR are significantly better than that of RM
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Fig. 12. [2-Sensors case, Monte Carlo simulations] Average run-time of LPR
(circles) and MGSR (x’s) in 100 experiments. The dashed and dotted lines
show the best linear fit for the time required by each of the two methods.

and almost identical to that of GBES. Furthermore, the EKF
estimates from the MGSR, LPR, and GBES are consistent.

Interestingly, in this case the heterogeneous sensor team
splits into two groups. Sensor-1 (the most accurate one with
distance measurement noise variance σ2

1 = 1) follows the
target from the left, while sensors 2, 3, and 4 form a separate
cluster approaching the target from the right while moving
very close to each other. The reason for this is the following:
As sensors 2, 3, and 4 measure their distances to the target
from approximately the same location at every time step,
their independent distance measurements become equivalent,
in terms of accuracy, to one with variance

1
σ2

2,3,4

� 1
σ2

2

+
1
σ2

3

+
1
σ2

4

= 1, or σ2
2,3,4 � 1

Hence, this problem becomes equivalent to that of 2 sensors
with equal noise variances (cf. Section VI-B), with the dif-
ference that in this case the “second” sensor is realized by
requiring sensors 2, 3, and 4 to move close to each other.

Finally, we should note that for this case, the time evolution
of the trace of the target’s position covariance matrix is almost
identical to that of Fig. 7.

D. Scalability and Run-Time

Contrary to the GBES method, which has computational and
memory requirements exponential in the number of sensors,
the complexity of the MGSR and LPR algorithms is only
linear. In order to corroborate our theoretical analysis, we
have evaluated the computation time required by these two
algorithms7 for the case of a homogeneous sensor team (R =
diag(σ2

i ), with σ2
i = 1 for i = 1, . . . , M ) tracking a moving

target. Specifically, we have examined the scalability of our
algorithms by varying M from 100 to 1000, and for every
value of M , we have conducted 100 simulations. These results
are summarized in Fig. 12. Furthermore, after performing
linear regression on these data we have determined that the

7Note that due to its exponential complexity, it was not possible to
implement GBES for teams of more than 5 sensors.
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Fig. 11. [4-Sensors case] Trajectories of the four sensors, and the actual and estimated trajectories of the target, when employing as motion strategy (a) MGSR,
(b) LPR, (c) GBES, and (d) RM. The ellipses denote the 3σ bounds for the uncertainty of the target’s position estimates at the corresponding time steps.

average time (in sec) required by each of these algorithms is:

tMGSR = 0.0027M − 0.0480
tLPR = 0.0058M + 1.0907

As evident from the precise linear fit shown in Fig. 12, both
algorithms have linear, in the number of sensors computational
complexity. Finally, we should note that the main reason for
the slower performance of the LPR algorithm (when compared
to the MGSR) is that we employ the MATLAB built-in
function “linprog” to solve the linear program. This function
improves the numerical accuracy of the LPR algorithm at the
expense of additional preprocessing steps.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we address the problem of constrained optimal
motion strategies for heterogeneous teams of mobile sensors
tracking a moving target using range-only measurements. Our
objective is to determine the best locations that the sensors
should move to at every time step in order to collect the most
informative distance measurements, i.e., the measurements
that minimize the trace of the target’s position covariance
matrix. We have shown that this problem can be exactly
reformulated to that of minimizing the norm of the sum of
vectors of different lengths with constraints imposed on their
directions. These constraints, which result from limitations on
the maximum speed of each sensor, make the problem NP-
Hard, in general.

In order to provide solutions that can be implemented in
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Fig. 13. The geometric relation between heading direction ϕi(k) and bearing
angle θi(k + 1).

real-time, we have introduced two algorithms for determining
the optimal motion of the sensors: Modified Gauss-Seidel
Relaxation (MGSR) and LP Relaxation (LPR). In the case of
MGSR, the objective function and constraints remain identical
to those of the original problem, while the minimization
process is a relaxation of the closed-form solution for the
case of a single sensor, applied sequentially to minimize the
cost function of multiple sensors. Alternatively, by relaxing the
constraints on the original problem, we have derived the LPR
motion strategy for the sensor team. The presented relaxation
methods have computational complexity linear in the number
of sensors with the MGSR performing slightly better compared
to LPR. Additionally, both MGSR and LPR achieve accu-
racy significantly better compared to a random motion (RM)
strategy that requires the sensors to move towards the target,
and indistinguishable to that of a grid-based exhaustive search
(GBES) algorithm that considers all possible combinations of
motions and has computational complexity exponential in the
number of sensors.

A straightforward extension of our work is to include
additional constraints on the motion of the sensors, imposed
by more restrictive sensor kinematic models or obstacles in
their surroundings [33]. In these cases, the extra constraints
can be handled by appropriately modifying the expressions in
Section III-D, which will further reduce the range of feasible
bearing angles to the target. Additionally, we intend to investi-
gate distributed implementations of both the MGSR and LPR
algorithms using single-bit [34] or multi-bit [35] messages
broadcasted between the sensors, or transmitted via local
(single-hop) communications [36], to account for limitations
on the sensors’ communication range and bandwidth.

APPENDIX A
PROOF OF COROLLARY 1

Proof: Consider the geometry of Fig. 13. The current
position, pi(k), of sensor-i is denoted by O, which is the

center of a circle of radius r = vi(k)δt. A line drawn from
the predicted position of the target, p̂T (k + 1|k), intersects
the circle at most at two points A and G. If sensor-i moves
to either of these, the (global) bearing to the target angle will
be θi(k + 1).

First, we focus on point A and compute the heading
direction, ϕi(k), that sensor-i should have in order to reach
that point. Note that since AC ‖ OD (both parallel to the
global x-axis) and are intersected by the line OB, the angles
D̂OB and ĈAB are equal, and thus

D̂OB = ĈAE + ÊAB ⇒ ϕi(k) = θi(k + 1) + ξi(k) (91)

which is (25).
We now compute the heading direction of sensor-i for

reaching the point G, i.e., the angle

ϕ′
i(k) = ϕi(k) + ÂOG

= ϕi(k) + π − 2ξi(k) (92)

where in the second equality we used the relation for the sum
of the angles in the isosceles triangle AOG. Substituting (91)
in (92), yields (26).

Finally, we compute ξi(k) based on the sin relation in the
right triangle OFA:

sin ξi(k) =
ρ

r
=

d̂
′
i(k) sin η′

i(k)
vi(k)δt

(93)

where in the second equality we employed the sin relation in
the right triangle EFO.

Since OD ‖ HC, we have:

θ′i(k) = D̂OE = ĈHE = θi(k + 1) + η′
i(k)

where in the last equality we used the relation between the
angles of the triangle HAE. Solving for η ′

i(k) and substituting
in the numerator of (93), yields:

d̂
′
i(k) sin η′

i(k) = d̂
′
i(k) (sin θ′i(k) cos θi − cos θ′i(k) sin θi)

= (ŷT (k + 1|k)− yi(k)) cos θi

− (x̂T (k + 1|k)− xi(k)) sin θi (94)

where we have dropped the time indices from θ i(k + 1) and
applied the definitions of d̂

′
i(k) and θ′i(k) (cf. (20) and (21)).

Substituting (94) in (93) and solving for ξi(k), yields (27).

APPENDIX B
EQUIVALENCE BETWEEN SINGLE SENSOR TARGET

TRACKING AND RAYLEIGH QUOTIENT

In this section, we will show that the minimization of the
trace of the target’s position covariance matrix, for the case of
a single sensor, is exactly equivalent to the maximization of
the resulting Rayleigh quotient.

Let us apply Matrix Inversion Lemma in (11):

Pk+1|k+1,11 = Pk+1|k,11−
Pk+1|k,11H

T
e,k+1(He,k+1Pk+1|k,11H

T
e,k+1 + R)−1He,k+1Pk+1|k,11

(95)

Substituting (95) into the cost function (18) and noticing
that tr(Pk+1|k,11) is a constant, we obtain the following
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equivalence:8

{θ∗1 , . . . , θ∗M}
= arg max

θ1(k+1),...,θM(k+1)

tr(PHT
e (HePHT

e + R)−1HeP ) (96)

Now let us restrict the above optimization problem (96) to
the case of a single sensor, i.e.,

θ∗1 = arg max
θ1

tr(PHT
e (HePHT

e + R)−1HeP ) (97)

Here, the measurement matrix He is a row vector with
dimension 1×2, the measurement noise covariance R becomes
a scalar. We denote:

h :=HT
e = [cos θ1, sin θ1]T

r :=R = σ2

and notice that the term hTPh + r is a scalar, thus (97) can
be rewritten as:

θ∗1 = arg max
θ1

(
tr(PhhTP )
hTPh + r

)
(98)

Applying the identity tr(AB) = tr(BA), we have:

tr(PhhTP ) = tr(hTPPh) = hTP 2h (99)

The second equality of (99) holds since hTPPh is a scalar.
Substituting (99) into (98) and applying the identity hTh =

1 to write r = hT(rI2×2)h, we derive:

θ∗1 = arg max
θ1

(
hTP 2h

hT(P + rI2×2)h

)
(100)

In order to transform (100) into the standard Rayleigh
quotient form, we employ the Singular Value Decomposition
(SVD) of P (cf. (29)):

P = UΣUT

where Σ = diag(ν ′
1, ν

′
2), ν′

1 = (μ′
1)

−1, ν′
2 = (μ′

2)
−1 and 0 ≤

ν′
1 ≤ ν′

2, and define h̄ := [cos(θ1 − θ0), sin(θ1 − θ0)]T, we
obtain:

hTP 2h
hT(P + rI2×2)h

=
h̄TΣ2h̄

h̄T(Σ + rI2×2)h̄
(101)

Next, let us define ȟ := (Σ + rI2×2)1/2h̄, and (101) can
be rewritten as:

h̄TΣ2h̄
h̄T(Σ + rI2×2)h̄

=
ȟT((Σ + rI2×2)−1/2Σ2(Σ + rI2×2)−1/2)ȟ

ȟTȟ

:=
ȟTǍȟ
ȟTȟ

(102)

which is the standard form of the Rayleigh quotient, with Ǎ =
(Σ + rI2×2)−1/2Σ2(Σ + rI2×2)−1/2.

Since

(Σ + rI2×2)−1/2Σ2(Σ + rI2×2)−1/2

=
[
(ν′

1)
2/(ν′

1 + r) 0
0 (ν′

2)
2/(ν′

2 + r)

]
8For clarity, we drop the time index from the covariance matrix and the

measurement matrix, i.e., P = Pk+1|k,11 and He = He,k+1.

and it is easy to verify that when 0 ≤ ν ′
1 ≤ ν′

2:

(ν′
1)

2/(ν′
1 + r) ≤ (ν′

2)
2/(ν′

2 + r)

so the unconstraint optimization problem

max
ȟ

(
ȟT((Σ + rI2×2)−1/2Σ2(Σ + rI2×2)−1/2)ȟ

ȟTȟ

)
achieve the maximum value at ȟ∗ = (ν′

2 + r)1/2[0, 1]T, i.e.,
h̄∗ = [0, 1]T, or equivalently, θ∗

1 = θ0 + π/2.
For the original constrained optimization problem, the above

result shows that the sensor should always move towards the
direction of the eigenvector corresponding to the maximum
eigenvalue of Pk+1|k,11, which is exactly the same result as
we have obtained in Section IV-A.

APPENDIX C
COMPUTATIONAL COMPLEXITY ANALYSIS OF THE LP

RELAXATION METHOD

We hereafter adopt the notation and methodology of [ 37,
Ch. 20] to evaluate the computational complexity of solving
the LP problem Π9.

Most LP problems take the following form:

min
x
{cTx ; Ax ≥ b, x ≤ bu, x ≥ 0} (103)

where c,x,bu ∈ Rm, b ∈ Rn, and A ∈ Rn×m. Additionally,
the dual problem of (103), used in the solution process, is
written as:

max
y,yu

{bTy − bT
uyu ; ATy − yu ≤ c, y ≥ 0, yu ≥ 0}

where y ∈ Rn, yu ∈ Rm.
To transform the LP problem Π9 to the standard form

of (103), we define:

x =[ζ1, ζ2, . . . , ζM , ζM+1]T

:=[x1 −X
(l)
1,11, x2 −X

(l)
2,11, . . . , xM −X

(l)
M,11, β]T

A :=
[

λ1, λ2, . . . , λM , −1
−λ1, −λ2, . . . , −λM , −1

]
(104)

b :=[−μ′
1 −

M∑
i=1

λiX
(l)
i,11, − μ′

2 +
M∑
i=1

λiX
(l)
i,11 −

M∑
i=1

λi]T

bu :=[X(r)
1,11 −X

(l)
1,11, . . . , X

(r)
M,11 −X

(l)
M,11, μ

′
1 + μ′

2 +
M∑
i=1

λi]T

c :=[01×M ,−1]

with n = 2 and m = M + 1.
In order to solve (103) using the Interior Point Method

(IPM), we need to introduce the slack variables

z := Ax− b, zu := bu − x, s := c + yu −ATy

and define the following diagonal matrices

X := diag(x), Y := diag(y), Z := diag(z)
Yu := diag(yu), Zu := diag(zu), S := diag(s)

The Newton direction, yd, can be calculated by solving the
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following normal equation [37, Ch. 20]:

(AD2A
T + D1)yd = r + AD2h (105)

where

D1 = ZX−1, D2 = (SX−1 + YuZ−1
u )−1

r = Y −1(γ1 − Y z), h = Z−1
u (γ1 − Zuyu) − X−1(γ1 − Xs)

with 1 denoting the M × 1 vector of ones and γ > 0
representing the duality gap.

Solving (105) is often the most computationally intensive
step of the IPM since employing Gaussian elimination requires
O(n2m + n3) operations [38, Ch. 3]. In the case of Π9,
however, this can be done in constant time – the matrix
(AD2A

T + D1) and the vector (r + AD2h) in (105) are of
dimensions 2 × 2 and 2 × 1, respectively. Instead, the most
computationally demanding process for Π9 is calculating these
two quantities. Noting though that matrix A has dimensions
2× (M + 1) (cf. (104)) and the remaining quantities involved
are either M × M diagonal matrices or M × 1 vectors,
this requires only O(M) operations to calculate the matrix
(AD2A

T + D1) and the vector (r + AD2h).

APPENDIX D
GRADIENT DESCENT METHOD AND IMPLEMENTATIONS

Gradient descent method is widely applied to nonlinear
optimization problems [32, Ch. 1]. It has the advantage of an
explicit form and the gradient vector can be easily obtained
for most differentiable objective function. The authors of [ 23]
and [24] generate the optimal motion strategy, based on
the gradient descent algorithm with constant step-size, for
a team of mobile sensors tracking moving targets. In this
section, we will describe the implementations of two gradient
descent algorithms, one employing the constant step-size rule
(called “GDC” in Section VI), the other selecting the step-
size successively (called “GDS” in Section VI), for the target
tracking problem using range-only measurements.

Before we proceed to the calculation of the gradient vec-
tor and the selection of the step-size, it is worthy noting
that the gradient descent algorithms are often employed to
solve unconstrained nonlinear optimization problem [ 30, Ch.
9]. Although some techniques, such as Gradient Projection
Methods [32, Ch. 2], can be adopted in the gradient descent
algorithm and applied to solve constrained optimization prob-
lem, it is sometimes computationally expensive to calculate
the projection directions or vectors. Recall the original for-
mulation of the optimal motion strategy problem (cf. Π 2 in
Lemma 2 in Section III-D), while in terms of the bearings {θi,
i = 1, . . . , M} as the optimization variables, is a constrained
optimization problem (i.e., the box constraint on θ i in Π2

due to the speed constraint on sensor-i). On the other hand,
it is worthy noticing that ϕi, the heading of sensor-i, is
unconstrained. Moreover, ϕi and θi are related through (25).
Therefore, to avoid the complication of calculating the pro-
jection directions for constrained optimization problem Π 2,
we replace the bearings {θi, i = 1, . . . , M} with the headings
{ϕi, i = 1, . . . , M} as the optimization variables and consider
the following equivalent optimization problem:

• OPTIMIZATION PROBLEM 10 (Π10)

minimize
ϕ1,...,ϕM

tr(Pk+1|k+1,11) = f(ϕ1, . . . , ϕM )

There are two key steps to implement the gradient descent
method. The first step is to calculate the gradient vector, which
we will discuss in detail next (in Appendix D-A). The second
step is to determine the step-size, which we will describe in
the following Appendix D-B.

A. Gradient Vector Calculation

The gradient vector for Π10 has the following form:

∇ϕf =
[

∂f
∂ϕ1

, . . . , ∂f
∂ϕM

]
where ϕ = [ϕ1, . . . , ϕM ]T and f(ϕ) := f(ϕ1, . . . , ϕM ).

Our goal is to obtain the explicit form for ∂f
∂ϕi

, i =
1, . . . , M .

Let us first apply the chain rule and since tr(Pk+1|k+1,11)
can be written in a closed form in terms of θ i, i = 1, . . . , M ,
we can immediately have:

∂f

∂ϕi
=

M∑
j=1

∂f

∂θj

∂θj

∂ϕi
(106)

Since θi is only dependent on ϕi, and independent on ϕj

for j 
= i, which implies ∂θj

∂ϕi
= 0 for j 
= i, hence we can

immediately simplify (106) to:

∂f

∂ϕi
=

∂f

∂θi

dθi

dϕi
(107)

Let us first consider the term ∂f
∂θi

. To find the closed-form
expression, we need to combine (28), (33) and (41) into:

tr(Pk+1|k+1,11) =
c

dc − 1
4dθ̄

(108)

where c and dc are constants defined in (33) and (41) respec-
tively, and the dθ̄ is a function of θ̄ (i.e., θ) expressed in (42).

From (108), we obtain:

∂f

∂θi
=

1

4

c

(dc − 1
4
dθ̄)

2

∂dθ̄

∂θi
=

1

4

(tr(Pk+1|k+1,11))
2

c

∂dθ̄

∂θi
(109)

The last equality follows from (108).
The closed form of ∂dθ̄

∂θi
can be found from (42):

∂dθ̄

∂θi
= 4λi (110)

×
[(

M∑
j=1

λj sin 2θ̄j

)
cos 2θ̄i −

(
λ0 +

M∑
j=1

λj cos 2θ̄j

)
sin 2θ̄i

]
We combine (109) and (110) together and obtain:

∂f

∂θi
= λi

(tr(Pk+1|k+1,11))
2

c
(111)

×
[(

M∑
j=1

λj sin 2θ̄j

)
cos 2θ̄i −

(
λ0 +

M∑
j=1

λj cos 2θ̄j

)
sin 2θ̄i

]

Our next step is to find the closed form expression for dθi

dϕi
.

This can be obtained through the geometric relation between
θi and ϕi from Fig. 13 (For notational brevity, we will drop
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all the time index (i.e., k or k+1) from all variables in Fig. 13
and in Appendix A).

From Fig. 13, we have:

ÊOA = D̂OA − D̂OE = ϕi − θ′i (112)

ÂEO = η′
i = θ′i − θi (113)

where θ′i is defined in (21).

Hence, we obtain ÔAE from (112) and (113):

ÔAE = π − ÊOA − ÂEO = π − ϕi + θi (114)

Let us apply the rule of sin to the triangle �OAE:

|OA|
sin(ÂEO)

=
|OE|

sin(ÔAE)
(115)

where |OA| = viδt and |OE| = d̂
′
i denote the length of

vectors
−→
OA and

−−→
OE respectively. Substituting (113) and (114)

into (115), we have:

viδt

sin(θ′i − θi)
=

d̂
′
i

sin(ϕi − θi)

⇒ ri sin(ϕi − θi) = d̂
′
i sin(θ′i − θi) (116)

where ri := viδt and d̂
′
i is defined in (20).

Since ri, θ′i and d̂
′
i are constant, from (116) we have:

ri cos(ϕi − θi)(dϕi − dθi) = −d̂
′
i cos(θ′i − θi)dθi

⇒ dθi

dϕi
=

ri cos(ϕi − θi)

ri cos(ϕi − θi)− d̂
′
i cos(θ′i − θi)

(117)

Hence, the explicit closed form of ∂f
∂ϕi

is acquired by
combining (107), (111) and (117):

∂f

∂ϕi
= λi

(tr(Pk+1|k+1,11))
2

c

ri cos(ϕi − θi)

ri cos(ϕi − θi) − d̂
′
i cos(θ′

i − θi)

×
[(

M∑
j=1

λj sin 2θ̄j

)
cos 2θ̄i −

(
λ0 +

M∑
j=1

λj cos 2θ̄j

)
sin 2θ̄i

]
(118)

Once we have the closed-form expression of the gradi-
ent vector ∇ϕf , then the unconstrained variable ϕi (i =
1, . . . , M ) is updated through the gradient descent method as
following:

ϕ
(�+1)
i = ϕ

(�)
i − αs

∂f

∂ϕi
i = 1, . . . , M (119)

where αs(> 0) is the step-size.

It is worthy pointing out that it is fairly easy to obtain
the updated θi from the updated ϕi. First, from Fig. 13,
the coordinate of the point A is: [xA, yA]T = [xi(k) +
ri cosϕi, yi(k) + ri sin ϕi]T. Hence the bearing from A to E
(i.e., θi) can be readily obtained:

θi = Atan2(ŷT (k + 1|k)− yA, x̂T (k + 1|k)− xA)
= Atan2(ŷT (k + 1|k)− yi(k)− ri sinϕi,

x̂T (k + 1|k)− xi(k)− ri cosϕi)

B. Step-size Selection

The next step after the acquisition of the gradient descent
direction is to select the step-size (i.e., the value of αs

in (119)). It is important to choose the appropriate step-size
in gradient descent methods. If αs is too large, the algorithm
might diverge; if αs is too small, the convergence rate would
be slow. In fact, there is no single rule that could determine
the optimal αs for all problems. Next, we will present two
strategies (cf. GDC and GDS in Section VI) for selecting
the step-size. Their performance and simulation results are
demonstrated in Section VI.

1) Constant Step-size (GDC): Here, the step-size αs is
fixed to a constant value and will not change over time.
The constant step-size rule is very simple and is applied in
both [23] and [24]. However, it is often very difficult to de-
termine the appropriate αs [32, Ch. 1]. In our implementation
of the GDC, we select αs = 1 in (119), i.e.,

ϕ
(�+1)
i = ϕ

(�)
i −

∂f

∂ϕi
i = 1, . . . , M

The performance of GDC is compared with the results from
the GBES, AR, LPR and GDS in Figs 7, 8 and 9.

2) Successive Step-size Reduction (GDS): To overcome the
difficulty of selecting the appropriate step-size in the GDC,
we have implemented the successive step-size reduction (i.e.,
Armijo rule) algorithm to choose the step-size. Here the
step-size αs is successively reduced by a constant factor βs

(0 < βs < 1) until a sufficient improvement of the objective
function is achieved, i.e.,

f(ϕ− αs∇ϕf)− f(ϕ) ≤ −γsαs‖∇ϕf‖22
where the constant γs ∈ [0, 0.5].

Throughout the simulations in Section VI, we set βs = 0.5
and γs = 0.1. The performance of GDS is compared with the
results from the GBES, AR, LPR and GDC in Figs 7, 8 and 9.

For the completeness, we present the basic steps of the
GDS in Algorithm 2. More details and discussions about the
convergence properties of this algorithm can be found in [ 32,
Ch. 1] and [30, Ch. 9].

Algorithm 2 GDS Algorithm

Require: f(ϕ), ∇ϕf , βs ∈ (0, 1) and γs ∈ [0, 0.5]
Ensure: αs ∈ (0, 1] {Determine the step-size}

1: αs := 1
2: while f(ϕ− αs∇ϕf)− f(ϕ) > −γsαs‖∇ϕf‖22 do
3: αs := βsαs

4: end while
5: Return αs
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