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Abstract—In this paper, we study the problem of optimal
trajectory generation for a team of heterogeneous robots moving
in a plane and tracking a moving target by processingrelative
observations, i.e., distanceand/or bearing. Contrary to previous
approaches, we explicitly consider limits on the robots’ sped and
impose constraints on the minimum distance at which the robts
are allowed to approach the target. We first address the casef a
single tracking sensor and seek the next sensing location order
to minimize the uncertainty about the target’s position. Weshow
that although the corresponding optimization problem invdves
a non-convex objective function and a non-convex constrain
its global optimal solution can be determined analytically. We

Emafkezhoustergiog @cs.umn.edu

target using a mixture of relative observations, including
distance-only, bearing-only, and distance-and-bearing mea-
surements. Since accurately predicting the motion of tigeta
over multiple time steps is impossible, we focus our attenti

to the case where the robots must determine their optimal
sensing locations for one step ahead at a time. Specifically,
we seek to minimize the uncertainty about the position of
the target, expressed as the trace of the posterior coearian
matrix for the target’s position estimates, while consiagr
maximum-speed limitations on the robots’ motion. Addition

then extend the approach to the case of multiple sensors and ally, in order to avoid collisions, we impose constraintstioa

propose an iterative algorithm, Gauss-Seidel-relaxation (GSR),
for determining the next best sensing location for each sens
Extensive simulation results demonstrate that the GSR algithm,
whose computational complexity islinear in the number of
sensors, achieves higher tracking accuracy thagradient descent
methods, and has performance indistinguishable from that b
a grid-based exhaustive search, whose cost is exponential in the
number of sensors. Finally, through experiments we demonsite
that the proposed GSR algorithm is robust and applicable to eal
systems.

Index Terms—Mobile Sensor, Target Tracking, Distance Mea-
surement, Bearing Measurement, Gauss-Seidel Relaxation.

|. INTRODUCTION

minimum distance between any of the robots and the target.
This formulation results in a non-convex objective funatio
with non-convex constraints on the optimization variaffies,

the robots’ sensing locations).

The main contributions of this work are the following:

e We first investigate the case ofsingle sensor and for
the first time we prove that the global optimal solution to the
active target tracking problem can be determined analijtica
for arbitrary target motion models. In particular, we showatt
depending on the distance between the robot and the target,
two distinct cases must be considered, each corresporalang t
different pair of polynomial equations in two variables,oge
finite and discrete solution set contains the optimal sofuti

Optimally tracking a moving target under motion and 4 \ye extend the above approach to the casewdfiple het-
processing constraints is necessary in a number of appligsgeneous sensors by employing the non-linear Gauss-Seidel-
tions such as environmental monitoring [1], surveillan2g [ rejaxation (GSR) algorithm whose computational compiexit
[3], human-robot interaction [4], as well as defense appliCis jinear in the number of sensors. Additionally, we compare

tions [5]. In most cases in practice, multipiatic wireless the performance of the GSR algorithm to that of a grid-based
sensors are employed in order to improve the tracking acgurgynaustive search (GBES), whose cost is exponential in the
and increase the size of the surveillance area. Contratgtie s ,;mber of sensors, and show that GSR achieves comparable
sensors, whose density and sensing range are fiebile tracking accuracy at a significantly lower computationaitco
sensors (robots) can cover larger areas over time withqybreover, we demonstrate that the GSR algorithm outper-
the need to increase their number. Additionally, their isphat t5rms gradient-descent-based approaches and is sigtifican

distribution can change dynamically so as to adapt to th@tter compared to the case where the sensors simply follow
target's motion, and hence provide informative measurésnege target.

about its position. Selecting theest sensing locations is of

articular importance especially when considering tinigeal : . .
P P P y g o e present the formulation of the target-tracking problem i

applications (e.g., when tracking a hostile target), asl w ection 1ll. In Section 1V, the global optimal solution for a

as limitations on the robots’ processing and communication . . . . .
resources P 9 single sensor is determined analytically, while the nowedir

In this paper. our obiective is to determine ootimal tra'egSR algorithm employed to solve the multiple-sensors case i
paper, ) P J described in Section V. Extensive simulation and real-dorl

tories for a team of heterogeneous robots that track a mov'é')gperimental results are presented in Sections VI and VI,

Following a brief review of related work in Section I,

respectively, while the conclusions of this work and diiets

This work was supported by the University of Minnesota (DT@)d the - > i
of future research are discussed in Section VIII.

National Science Foundation (11S-0643680, 11S-08119486;0835637).



Il. LITERATURE REVIEW In contrast to [16], where the optimization is performed

Although target tracking has received considerable attent in the discrete time domain, Passerieux and Van Cappel [17]
in most cases the sensors involved stetic and the emphasis formulate the optimal trajectory generation fangle-sensor
is on the optimal processing of the available informatiag (e target tracking using bearing measurements in continuous
given communication constraints [6]). In contrast to usingMe. In this case, the target is constrained to move on a
static sensors, the deployment afobile sensors (orobots) str_a|_gh_t line with constant velocity and_the obJec_t|ve is to
for tracking offers significant advantages. For examplarger Minimize the target's location and velocity uncertaintyrbgx-
area can be covered without the need to increase the numbéPfing the FIMS’ determinant over a finite time horizon. The
nodes in the sensing network. The idea of optimally choosifg'thors present theecessary condition for the continuous-
the mobile sensors’ locations in order to maximize infoiiorat time optimal sensor path based on the Euler equation.
gain (also known as adaptive sensing or active perceptas) h In [18], Logothetiset al. study thesingle-sensor trajectory
been applied to the problems of cooperative localizatign [©Ptimization from an information theory perspective, veher
simultaneous localization and mapping [8], parametemesti the sensor attempts to reduce the target's location and-velo
tion [9], [10], and optimal sensor selection [11], [12]. Ihat ity uncertainty through bearing measurements. The authors
follows, we review single- and multi-robot tracking appchas  employ the determinant of the target's covariance matrix

that usedistance-only, bearing-only, or both distance and ©OVer a finite time horizon as the cost function, and compute
bearing measurements. the optimal solution by performing grid-based exhaustive

search. Acknowledging that the computational requirements
increase exponentially withhe number of time steps, the

A. Active target tracking - distance-only observations ) X ) :
authors present suboptimal solutions in [19], wheredtid-

Yang et al. [13] present an active sensing strategy usi

dist I X h both e 4 th minimization takes place over only one time step.
Istance-only measurements, wnere bo , C()ev:r?anceear Recently, Frew [20] investigates the problem shgle-

. 27 _ Sensor trajectory generation for target tracking using bearing
considered as the objective functions. The authors PrOROSH, easurements. In this case, motion constraints on the kenso

tcr? ntrol ﬁw’ V\t/.'th co.?ﬁtant stetp tS|ze, Eased or] gl'mmegf[ Oft trajectory are explicitly incorporated in the problem farm
€ cost function with respect 1o each Sensors coordinales, i,y ang the objective functiordéterminant of the target's

In [14], Martinez and Bullo address the problem of optim ovariance matrix) is minimized over a finite time horizon

sensor placement and motlor_1 coordlnauon strategielsdoo- usingexhaustive search through a discretized set of candidate
geneous sensor networks using distance-only measuremergg,nsor headings

where the emphasis is on the optimal sengl@cement for
(non random)static target position estimation. The objective
is to minimize thedeterminant of the covariance matrix. The C. Active target tracking - distance-and-bearing observations

resulting control .Iaw requires that the sensors move on astroupe and Balch [21] propose an approximate tracking
polygon surrounding the target so as the vectors from tigetary, e ayior, where the mobile sensors attempt to minimize the

to the sensors are uniformly (i.n terms of direction) SpaCEd'target’s location uncertainty using distance-and-bepnitea-

Recently, Stumpet al. [15] investigated the problem of g, rements. The objective function is ttieterminant of the tar-
localizing a stationary target by processing distance-onlyet hosition estimates’ covariance matrix, and the opétitn
measurements from mobile sensors. The objective is 10 $@aplem is solved bgreedy search over the discretized set of
lect the sensing locations such that thiee derivative of  cangidate headings, separately for each sensor. Addiona
the determinant of the target-position estimategiformation  yhe eypected information gain from the teammates’ actisns i
matrix (i.e., the inverse of the. covariance matrlx)_ is max'm'ze%pproximated by assuming that their measurements in the nex
The proposed control law is based on teadient of the  ime step will be the same as these recorded at their current
cost function with respect to each sensor’s coordinates, agqations.
is impleme_nted in a distributed fa_shion. Additipnally, the  tati-saber [22] addresses the problem of distributegetar
expected distance measurements in the next time step @R\ing for mobile sensor networks with a dynamic commu-
approximated by assuming that they will be the same as th¢geation topology. The author tackles the network conmigti
recorded at the sensors’ current locations. issue using a flocking-based mobility model, and presents a

modified version of the distributed Kalman filter algorithm

B. Active target tracking - bearing-only observations for estimating the target's state. In this case, the sensees

In [16], Le Cadre proposes an approximate tracking algbeth distance and bearing measurements to a target thasmove
rithm, in which asingle mobile sensor attempts to minimizein 2D with constant velocity driven by zero-mean Gaussian
the target’s location and velocity uncertainty over a fitiilge noise, and seek tminimize their distancesto the target, while
horizon, using bearing measurements. Under the assumptioniding collisions.
that the distance between the sensor and the targatvas/s Chunget al. [23] present a decentralized motion planning
constant, the objective function (thdeterminant of the Fisher algorithm for solving the multi-sensor target tracking Ipiem
Information Matrix — FIM) is significantly simplified, and using both distance and bearing measurements. The authors
the resulting control law requires that the sensor switdtsees employ the determinant of the target’'s position covariance
bearing rate between its upper and lower bound. matrix as the cost function. The decentralized control law i



this case is based on tlggadient of the cost function with I1l. PROBLEM FORMULATION
respect to each of the sensor’s coordinates with constapt st

) Consider a group of mobile sensors (or robots) movin
size of 1. group ( ) g

in a plane and tracking the position of a moving target by
D. Summary processing relative measurements, consisting of distane
_ . . bearing-only, and distance-and-bearing observationghik
The main drgwback of the previous approaches is tiat paper, we study the case gliobal tracking, i.e., the position
physcal constraints on thg motion of the sensors are CONot the target is described with respect to a fixed (global)
S|der_ed. The only exc_epuons are _the Works_ presente_d n [%Oﬂgme of reference, instead of a relatigeoup-centered one.
for d|stance-and-bear|ng obse_rvat|ons, and in [20] foringa Hence, we hereafter employ the assumption that the position
only observations. However, in both cases the proposed gr%;d orientation (pose) of each tracking sensor are knowm wit

basltgd exhaustive aearch alg(t)rlt'Fhm,l whenl egtende?alto Sh accuracy within the global frame of reference (e.@urfr
multi-sensor case, has computational compleriggonenti Rgecise GPS and compass measurements),

in the number of Sensors, which becomes proh|b|t|ve when t Furthermore, we consider the case where each sensor moves
number of the sensors is large and/or the size of the gridscell . L
. . .In 2D with speedw;, which is upper bounded by v;max,

small. In addition, teams of heterogeneous sensors usxedmi . .
. . . . . i1=1,...,M, whereM is the number of sensors. Therefore,
(i.e., distance and/or bearing) relative observations canlg . . e .

. ; . . t time-stepk + 1, sensor: can only move within a circular
considered in [13], whose gradient-based algorithm cagy on

uarantee achievirigcal minimum, while its convergence rateregion centered at its position at time-stépwith radius
9 9 ’ 9 vimax0t, Wheredt is the time step (see Fig. 1). In order to avoid

is not addressed. Moreover, analytical solutions for aleingcollisions with the target, we also require that the diseanc
sensor tracking a moving target are provided only for tl"be '

. ) 4 etween the target and sengdo be greater than a threshold
bearing-measurements case when the target is restri¢kent ei 9 g

) ;, I.e., sensoi-is prohibited to move inside a circular region
to be at a constant distance from the sensor [16], or to move/dh P , o . . 9
. . . . . centered at the target's position estinfas time-stepk + 1
a straight line with constant velocity [17]. Lastly, exters

. . with radiusp, (see Fig. 1J. Note also that since the motion of
ggllls?(}leaﬁg?j [17] to multi-sensor target tracking have notrbeethe target can be reliably predicted for the next time stdp, on

. . our objective is to determine the next best sensing location
Compared to our previous work [24], where only distanc :
X . . r all sensors at one time step ahead.
observations were employed, in this paper, we address

’ ; fh the next two sections, we present the target’s state
most general case of active target tracking when processin . : ;
a mixture of relative measurements (i.e., distance andfdf pagation equations and the sensors’ measurement models

bearing}. Specifically, we first address the problem of single-
sensor target tracking where we explicitly consider camsts A. Sate Propagation

on the robot's motion by imposing bounds on its maximum |, e work, we employ the Extended Kalman Filter (EKF)

speed, as well as on the minimum distance between the r(_){;bqt recursively estimating the target's statey (k). This is
and the target. However, contrary to [16] and [17], we ré8Uiliefined as a vector of dimensia@iV, where N — 1 is the

no particula.r type of target’g motion. .Our maiq contributis highest-order time derivative of the target’s positionaidsed
that we derive thalobal optimal solutions for distance-only, by the motion model, and can include components such as
bearing-only, and distance-and-bearing observationsly&n position, velocity, and acceleration:

cally. Moreover, we generalize these results to the metltissr ) ] B . T

case by employinGauss-Seidel relaxation that minimizes the ~ X7(K) = [@1(k) yr(k) 1 (k) gr(k) Zr(k) gr(k) ... ] 1)
trace of the target's position estimate covariance witlpees e consider the case where the target moves randomly
to the motion ofall sensors in a coordinate-descent fashiogng assume that we know the stochastic model describing the
Our algorithm applies to heterogeneous sensor teams usingigion of the target (e.g., constant-acceleration or orist
mixture of observations, has computational complekitgar  yelocity, etc.). However, as it will become evident later oar

in the number of sensors, and achieves tracking accura@hsing strategy does not depend on the particular seleattio
indistinguishable of that of an exhaustive search over afe target's motion model.

10ur previous publication [24] and the current paper shareesparts of _
the problem formulation. However, our current work gerieeal the results xr (k + 1) o ¢kXT(k) + kad(k) (2)
in [24] (which are applicable solely to the case of distaonl measurements)
by providing solutions to distance-only, as well as beaodnty and distance- Sldeally, the collision-avoidance constraints should bénge using the
and-bearing observation models. Furthermore, for thelesisgnsor case, the true position of the target. However, since true target posittounavailable,
solution strategies employed in [24] and in our current pape fundamentally we instead use thestimated target position and appropriately increase the
different. While the closed-form optimal solution in [24% idetermined safety distance to account for the uncertainty in this estm
geometrically, our current work derives the optimal solutiagebraically 4As explained in Section IV-E, our problem formulation can eéxéended
by solving the correspondingKT optimality conditions analytically. to handle additional motion constraints such as those iethby obstacles or
2A preliminary version of this paper was presented in [25] rehall sensors the sensors’ kinematics, e.g., maximum turning rates irgas the sensors’
can measure both distance and bearing to the target. Thes pafends the motion directions. The effect of these will change the shafiibe feasible set
results in [25] by providing a unified framework to charaizerthe solutions from a circular disk to an area determined by the turningus@onstraints.
for the three different measurement models (i.e., distamtg bearing-only, Note, however, that this new region can also be described dynpmial
and distance-and-bearing), and is applicable to heteemgensensor teams constraints, since the kinematics of a mobile robot invaiee and cosine
which collect a mixture of observations. functions.



global frame of reference. Furthermore, to simplify theanot

Target Trde/ ]
Position at k] . tion, we introduce the following quantities € 1, ..., M):
Target Estimated ',
Position at k+1 | AIT (k-|— 1) = IT(k+ 1) —Is(k—l- 1)
Sp_(k) © | 1 1
T et Tee Ayr,(k+1) = yr(k+1) —ys,(k + 1)
Azp, (k+1)k) = 20(k + 1|k) — zg, (k + 1)
“p,(k+1) ~ i
7 Ay, (k + k) = gr(k + k) — ys, (k +1)
Sensor 4 at k Pi = Pz(k + 1) = Ps; (k + 1) - IST(k + 1|k) (4)

S 1) Distance-and-Bearing Observation Model: At time-step

’ k + 1, sensor; (j € M,) records its distance-and-bearing
observationsd, (k + 1) andd;(k + 1)] to the target, as shown
in Fig. 1. The measurement equation is:

’

I, U|max5t

Fig. 1. lllustration of thei-th sensor’s and target's motion: Senganoves
in 2D with speedy;, which is bounded by;max. From time-steps to k41, d;(k+1) ng,; (k+1)

the sensor can only mowsithin a circular region centered at its position at Zj (k + 1) = 0 (k + 1) ng. (k + 1) (5)
time-stepk with radius v;maxdt. Furthermore, to avoid collision with the J 7
target, sensoi-is prohibited to move inside a circular region centered at thyyjth
target’s positiorestimate at time-stept+1 with radiusp;. Si p is the target's

position with respect to sensorThe distance measurement of sensiwthe di(k+1) = \/AIQ k41 Av2 (k+1 6
norm of sipp(k + 1) plus noise, and the bearing measurement of sehsor- J( * ) TJ'( * ) * yTJ( * ) ( )
AyTj (k} + 1)

is 6;(k + 1) plus noise.
Azt (k+1)

wherew, is a zero-mean white Gaussian noise process wiltthere ¢,(k + 1) is the orientation of sensgt-andn;(k +
covariance = E[wy(k)w (k)]. The state transition matrix, 1) = [ng,(k+1) ng,(k+ 1)]T is the noise in thej-th

@, and the process noise Jacobi&ky, that appear in (2) sensor's measurements, which is a zero-mean white Gaussian
depend on the motion model u;ed [2§]. In our work, Fheﬁﬁfocess with covarianc®; = E[n;(k + 1)n}f(k: +1) =

can bearbitrary, but known, matrices, since no assumptionsiiag(2 , o3 ), and independent of the noise in other sensors,

on their properties are imposed. i.e., E[n;(k+1)nT(k+1)] =0 fori # j.
The estimate of the target’s state is propagated by:

0;(k + 1) = arctan ( ) —¢;(k+1) (7)

The measurement of senspis a nonlinear function of the
xp(k+ 1|k) = ®rxp(klk) (3) state variablexr [see (5)]. The measurement-error equation

where xr(¢|j) is the state estimate at time-stép after for sensory, obtained by linearizing (5) is:

measurements up to time-st¢dave been processed. z;j(k+1lk) =z;(k+1) —z;(k+ 1|k)
The error-state covariance matrix is propagated as: H,(fllfccr(k F1R) 4+ n,(k+1)  (8)

Piiik = 2rPyi®y + GrQuGy

1R

where

whereP,; is the covariance of the erraty (¢]j) = x7(¢) — ok + k) = [dy(k + 1)k) 6, (k + 1[k))"

x7(¢]7), in the state estimate.

o —~2 —~2
d;(k+ 1|k :\/A:v (k+1|k) + Ayp (kK + 1]k
B. M r t Model i ( k) T](A k) KJTJ( k)
. Ayp (k+ 1|k
Let us denote the complete set of the sensor team 8S§ (k + 1|k) = arctan AyTJ( ) — i (k+1)
M ={1,...,M}, where M is the number of the sensors. Azt (k + 1|k) '

At time-step £ + 1, based on the type of the measure- L
ment that each sensor collects{ can be partitioned into Note that the measurement matrix in (8) has a block column
' Structure, which is given by the following expression:

My U My U M3, where M, denotes the set of sensor
that have access to both distance and bearing.observations; Hl(cj;i)—l - [hJT(k +1) O2><(2N—2)] 9)
M, comprises sensors that measure only bearing; &g . i i

consists of sensors that record distance-only measuremefyere2/N is the dimension of the state vector and

In what follows, pr(k + 1) = [er(k + 1) yr(k + D" and 4 1) = [hy (k+1) by, (k+1)] (10)
ps;(k+1) = [zs,(k + 1) ys,(k + 1)] denote the positions

1
of the target and théth sensor, respectively, expressed in the hy, (k +1) = pj, hy,(k+1)=——Jp; (11)

-1
| | \/PiPi Ps P
5In the remainder of the paper, the “hat” symbigldenotes the estimated

value of a quantity, while the “tilde” symbdl, represents the error between\yhereJ = C (_5) and C() is the2 x 2 rotational matrix
the actual value of a quantity and its estimate. The relalign between a 2 '

variable, z, and its estimatez, is z = =z — &. Additionally, “~" and “>" 2) Bearing-only Observation Model: At time-stepk +1
denote the matrix inequality in the positive definite anditpas semidefinite ¢ v h its b . '
sense, respectivel,, x», andl,, represent then x n zero matrix anch x n sensort (é € MQ) only has access to Its bearing measurement

identity matrix, respectively. 0¢(k + 1) towards the target [see (7)], and the measurement



and measurement-error equations are: C. Sate and Covariance Update

zo(k+1) =0,k +1) +np,(k+1) Once the measuremenis(k+ 1), i =1,..., M, from all
- o = the sensors are available, they are transmitted and pextess
Ze(k + k) = Hy Ly Xr (b + 1k) +ne(k +1) (12) " 4t a fusion center (e.g., one of the robots in the team), amd th
whereny(k+1) = ng, (k+1) is the zero-mean white Gaussiarfarget's state estimate and its covariance are updated as:
measurement noise with varianB = E[n¢(k + 1)n} (k + . . N
1)] = o2, which is independent of the noise in other sensors. xr(k+ 11k +1) =%k + 1k) + Kepa2(k + 1]k)

_ - T
As before, the measurement matﬂii(fﬁl has the following Prtiprt = Priajp — Kir1Se1 Ky (19)
structure: where K, = PkH‘kTH;fHS,;il is the Kalman gain, gnd
Hz(fJ)rl _ [h;p(k +1) 01><(2N—2)] (13) Ski1 = Hy1PrpHy, + R is the measurement residual
1 covariance.
hy(k+1) =hy,(k+1) = ——Jps (14) Our objective in this work is to determine the active-
Py bt sensing strategy that minimizes the uncertainty forgbeetion

estimate of the target. In order to account for the impact of
3) Distance-only Observation Model: At time-stepk + 1 the prior state estimates on the motion of the sensors, vie firs
sensor (1 € Ms) only measures its distanck(k + 1) to the Present the following lemma.

target [see (6)], therefore the measurement equation is: Lemma 1 The posterior (updated) covariance for the tar-
get’s position estimate depends on (i) the measurement sub-
z,(k+1) =d,(k+1)+ng(k+1) matrix corresponding to the targepssition, and (ii) the prior

(propagated) covariance sub-matrix of the targptsition:
_ B -1
Priijkt1,11 = ((PkJrl\k,ll) "+ HI R 1He,k+1) (20)

whereH, ;1 is defined in (18) an®,; ;; denotes the x 2
upper diagonal sub-matrix @&, ; [see (19)] corresponding to
YK€ covariance in the position estimates.

Proof: The proof is shown in Appendix A. |

The importance of this lemma is that the optimization

algorithms presented in Sections IV-V can be derived based
on (20) for the position covariance update — instead of (&®) f
HY, = b (k+1) 01x@n—2)] (16) the entire state covariance update — regardless of theasttich

and the corresponding measurement-error equation is:
Z,(k+1k) ~ HY Zr(k+1k) +n,(k+1)  (15)

wheren, (k+1) = ng, (k+1) is the noise in the-th sensor’s
distance measurement, which is a zero-mean white Gaus
process with varianc®, = E[n,(k + 1)n} (k + 1)] = o7 ,
and independent of the noise in other sensors. Additiortaky
measurement matriHEj}rl in (15) is given by the following
expression:

k+1 =
-1 process model employed for describing the target’s motion.
h,(k+1) =hg (k+1) = P (17) Exploiting the fact thaR is diagonal, and substituting (18)
p[, pL . . . . .
into (20), we obtain the following expression B, 1 |x41,11°
_ -1 ijp; LJPjp;JT
4) Linearized Measurement-Error Equation: The overall Phttihtin = [(P"“"'“) +j€ZM1 (o—ﬁj pTp; o3, (0Tpj)?
measurement-error equation at time-step- 1, obtained by | JereT T ) ]
stacking all measurement-error equations corresponding t + > — (iﬁp;m + > = E;‘;} (21)
o temy 76, \Pre vemg %a, PoPe
each sensor [see (8), (12), and (15)], is: In order to encapsulate all three measurement models (see
Z2(k+1|k) = [le(kJr k) ... z5(k+ 1|l<:)}T Section 111-B) into a unified framework, we introduce two
~ Hyp 1% (k + 1k) + n(k +1) plnary variablessy, € {_0,1} and'ngi € {0,1} for sensor,
t=1,...,M. kg, = 1 if sensoré can measure relative dis-
with tance at time-step + 1, otherwisexy, = 0; similarly, kg, = 1
T T T if sensors is capable of taking a bearing observation at time-
n(k+1)=[ng(k+1) ... ny(k+1)] stepk + 1, otherwisexy, = 0. Following this convention, we
and [see (9), (13), and (16)] haverq, = ko, =1, Vi € My; ka, =0, Ko, =1, Vi€ My;
. T Kd, :_1, kg, = 0, Vi € Ms. Using this convention, (21) can
Hj.p = {(Hgﬁl) (HS\Q) } = [H. 1 0] be written as:
Pk+1\k+1,11 (22)

M

M T T\ "t
_ . PiP; Jpipi J
(Pk+1\k,11) T+ § H‘él 2L + E : HZI pp )

corresponding to the target’s position: 2 2
= oa, PP o, (PiPi)?

whereH, ;1 is the block element of the measurement matrix (

H = [hi(k+1) ... hy(k+1)] (18)

whereh;(k + 1), ¢ = 1,..., M, are defined based on the Ren_leukl; Note thatVi € M, th_e_ termoy, is irrele-_
type of the observations considered [see (10), (14), an)j.(l?’ant'_'g'e"adi can be set to any positive real number, since
Note also thaR = E[n(k + 1)nT(k + 1)] = diag(R;), i = "%, = 0 regardless of the specific value @f . Similarly,

1) 2 P .
1,..., M, due to the independence of the noise in each sensbr. 1S irrelevantvi € Ms.



Remark 2: When sensoi-is unable to detect the target and In what follows, we apply a coordinate transformation (see
hence records neither distance nor bearing observationsLainma 2), to convert the objective function df into (28),
time-stepk+1, the corresponding,, andxy, in (22) are setto in which A is a diagonal matrix.
zero. In this case, the target’s position posterior covaesais Lemma 2: Assume Py 11 = 0Oax2 IS non-
independent of the variable;. However, we still require that diagonal, and  consider the  eigen-decomposition

sensor: minimizes its distance||p;||) to the estimated targetP;jl‘k 11 = Clpo)AC(—¢g), where A = diag(A\; ", \5")
location, while adhering to its motion and collision-avaite and\; > A\, > 0. Then
constraints, so as to increase its probability of re-detgdhe M T M T
; . . : Kd; SiS; Ko, Jsis; J
target in the following time steps. The updated estimate of(Pxy1jx+1,11) = tr <A+Z T +3° oF (aTe)? >
i=1 di D1 S —1 0; i Dt

the target’s staté&r(k + 1|k + 1) is communicated to sensor-
1 by those sensors that are able to detect and take relagyﬁ)eresi = C(=po)pi, i=1,..., M.
measurements at time-stép+ 1. In case none of the robots Proof: SubstitutingP! ‘ = C(po)AC(—y0) and
. - o . . k+1|k,11

can detect the target, i.esy, = Ko, = 0, V i € M, then pi = C(po)s: in (27), employing the equalitg(—po)J =
all robots propagate the previous state estimate [seedBl, yc(_ ) which holds since both arex 2 rotational matrices,
plan .the|r motions so as to minimize their distances from t%d noting that the trace operation is invariant to sintyari
pr(Iad|ctt_]ed target's Ic_>cat|on. ¢ | h , transformations results in (28). [ |

n the next section, we formulate the Sensors' one-step-ygie 15 that the similarity transformation does not cleang
aheadoptimal ”?0“0” qrategy as a constrained optimizationye norm of a vector; thus, constraint (25) is equivalent to
problem, and discuss its properties. i — ci|| < 74, with ¢; = C (—go) [ps, (k) — pr(k + 1}k)],
and constraint (26) is equivalent {8;|| > p;. Therefore I,

D. Problem Statement and Reformulation . . . UM )
) } is equivalent to the following optimization problem:
As is evident from (4) and (22), after each update step the
o OPTIMIZATION PROBLEM 2 (II5)

target’s position covariance matrix will depend, throgghon

all the next sensors’ positionss, (k+1) = [zg, (k+1) ys, (k+ . M kg, 85T O kg, JsisTIT

DT, i =1,..., M. Assume that at time-stel, sensor: is Qi -t A+Z +Z 2 (oTs,)2
=1 i

A 1yeeesy Sh 0'3, S?Si - 09, Si S;
located atpg, (k) = [vs,(k) ys,(k)]". At time-stepk + 1 ' =1
. L o i - . . (29)
its positionpg, (k + 1) is confined within a circular region )
centered apg, (k), due to the maximum-speed constraint, but ~ s.t. [[si —cil|” <77, (30)
outside a circular region centeredfat(k+1|k) so as to avoid ]| > p2, i=1,...,M (31)
collisions (see Fig. 1), i.e.,
Once the optimal solutioks;, i = 1,..., M} is obtained,
[ps;(k+1) —ps, (k)| <7 (23) the best sensing location for sensoat time-stepk + 1,
ps,(k+1) —pr(k+1k)|| > p; (24) ps,(k+1), can be calculated throughy = C(yo)s; and (4).

Remark 3: The optimization problemil, is a nonlinear pro-
gramming problem since both the objective function [seg](29
and constraints [see (30)-(31)] are nonlinear functionth wi

where r; = min (Vimaxdt, ||ps; (k) — Dr(k + 1|k)]|) <
vimaX(St, = 1,...,M.

yieslgsst|tutlng p: [see (4)] in the above two mequalmes,reSIoect to the optimization variable — [S1T o Sr]{/[}T.
' Moreover,Il; (and equivalently]T;) is not a convex program
|lpi — [ps, (k) — pr(k + 1[k)] || <7 (25) since the objective function (29) is non-convex with respec
Ipill = pi 26) S and the feasible set defined by constraint (31) is not canvex

Remark 4: As shown in [24], given distance-only observa-
thus, the feasible region @; is inside a circle of radius; tions, the corresponding optimization problem, when abnsi
centered atps, (k) — pr(k + 1[k), and outside a circle of ering maximum-speed constraintsNB-Hard. Thus the more
radiusp; centered at the origifd 0]". Note that the estimate general problem addressed in this paper (of which [24] is a
pr(k+1/k) [see (3)] is shared among all sensors, and can Bgecial case) is alshP-Hard in general.
treated as a constant at time-step- 1. Hence, oncep;, i = The above remark establishes the fact that the problem
1,..., M, is determined, the location of sensoat time-step of optimal trajectory generation for multiple sensors with
k+1,ps,(k+1), i=1,..., M, can be obtained through (4).mobility constraints that track a moving target using mixed

The problem we address in this work is that of determining|ative observations (i.e., distance and/or bearingyPisHard

the sensorsoptimal motion strategy, i.e., the set{p;, i = in general. Hence, finding thglobal optimal solution forll;
1,..., M}, that minimizes thetrace of the target's position or 11, is extremely challenging. Ideally, the optimal solution
estimate covariance matrix [see (22)], under the consfaigan be determined if one discretizes the feasible set of all
specified in (25)-(26): sensors [see (30)-(31)] and performs an exhaustive segnih.

o OPTIMIZATION PROBLEM 1 (II;) approach, however, has computational complesstonential

e w ((Pm\k,n)” +§ n;“ piTp? +i nzi inrp;rb-];)i] in_ the nur_nb_er of sensors, Which_ is of limited practical use
PL.- B Soq, PP I op, (PIpi) given realistic processing constraints.

st |[pi = [ps,; (k) — bk + 1[K)] || < i, @7 In order to design algorithms that can operate in real time,

Ipill > p:. i=L....M appropriate relaxations ofl, become necessary. In what



follows, we first derive the analytic solution for the single
sensor case (see Section IV) and based on that we propose a
Gauss-Seidel relaxation (GSR) to solve the general problem

of multiple sensors (see Section V), which has computationa
complexitylinear in the number of sensors.

IV. SINGLE-SENSORACTIVE TARGET TRACKING:
ANALYTICAL SOLUTION

For M = 1, the optimization probleril; described by (29)-
(31) is simplified tc®

e X
o OPTIMIZATION PROBLEM 3 (II3) g
T TyT\ !

. Kq SS Ko Jss+J
s o;sts o5 (sTs) . o . )

9 Fig. 2. Geometric illustration of Lemma 3. The global optinsalution
st |s—c|” <7, (33) resides only in®, i.e., the portion of the boundary of the feasible €&t

2 9 (depicted by the red-colored cur#D B), defined by the two tangent lines
[sI” > p (34) 0A andOB, which is closest ta.

In order to solvells, we proceed as follows: We first de-
termineall critical /stationary points (i.e., those points which
satisfy the Karush-Kuhn-Tucker (KKT) necessary optinyalit

conditions [27, Ch. 3]) analytically and evaluate theireatjve [CIRIC S (C) Si)TJQT - iJSSTJj JSSTJQT
values. Then, as optimal solution fbi; we select the critical (597 (57)  s™s * ((s)T(s%))*  »* (s7s) L (s7s)
point whose objective value is the smallest. (A ka (sH)(sH)T @J(Si)(si)TJT)

To proceed, we first construct the Lagrange function [27]: o7 (s)T(st)  of ((sh)T(st))?

v Kq SST ko JssTJT
L(s, pu,v) = fo(s) + g (Hs — c||2 — r2) + 3 (p2 — ||sH2) = <A+ —;l— + 2

04 STS O'g (sTs)2

)7 = fo(s') < fo(s)

Based on the KKT necessary conditions, the critical points |
s*, and the associated Lagrange multipligisand »*, must Remark 5. Lemma 3 establishes the fact that the global
satisfy: optimal solution forIlz, when optimizing over the feasible

set ) (see Fig. 2), is always on itboundary 012, defined

Vfo(s") + 7 (s" =) = 78" = 02 (35) by (33)-(34), i.e.s* satisfies eithefis* — c|| = r or ||s*|| = p.

w >0, u¥ (Hs* —c|? - rz) =0 (36) I\/!oreovgr, by applying the same argument as before (see
. L/ o o Fig. 2), it can be easily shown thgg(st) < fo(s?), wheres?
v >0, v (P — Is*|l ) =0 (37) ' is any other intersection point in the directionséf Therefore,

the global optimal solutios* resides only in the portion of

Clearly (36)-(37) are degree-3 multivarigta@ ynomial equa- 94 facing the origin, denoted @ (see Fig. .

tions in the unknowns*, p* andv*. Furthermore, as shown - .
in Appendix B, bothf, and its derivativeV f, are rational As shown in Figs. 3(a)-3(d), depending on the values of the

. . N arameters:, r, and p, there exist four cases that we need
functions with respect te*, and thus (35) can be transforme : : ~
. . A, N o consider for the feasible sék of II5. In what follows, we

into a polynomial equality in s*, p*, and v*. Therefore,

computing all critical points ofll; is equivalent to solving analytlcally solve the KKT f:ondmons (35)'(3.7) for each of
the polynomial system defined by (35)-(37). Moreover, it i?e first threg cases [see Figs. 3(a)-3(c)], while for therf[fou
worth mentioning that unlike linear systems, in generafeheCase [see_F|g. ?.’(d)]’ \We propose a _strategy fo_r handling the
exist multiple solutions for the above polynomial system. Inempty (p_r _mfea*5|ble) seﬁz.TIn the ensuing deTnvatlons, we use
order to efficiently solve (35)-(37), we first prove the foliag € definitionss™ := [z y]" ande:=[c c]
lemma:

Lemma 3: Assumef) = QUOS is a compact and connectedA. Casel: 0 < p < ||| —r

sef in 2D, and the originO = [0 0y* ¢ Q For anys < €, As shown in Fig. 3(a), the onlgctive constraint for Case | is
the line segment connectirgand the origin will intersecd$2  the maximum-speed constraint [see (33)]. Based on Lemma 3
at one or multiple points. Les* € 9Q denotes the closest g Settingu = vmax, the optimal solutions* must reside

intersection to the origin (see Fig. 2), thei(s?) < JQO(S)- in the arc ADB, where A and B are two tangent points,

_ Proof: Based on the construction sf, we haves' = »s, \hose Cartesian coordinates are computed later on [se (53)
with > € (0,1), and thus: Since the collision-avoidance constraint (34)imactive, its

8o simplify notation, we drop the indices 8f, o4, , oo, , %d,, Ko, 1, 81t is straightforward to extend and generalize Lemma 3 tantiti-sensor
r1, andp. case and conclude that the global optimal solut{af,s = 1,..., M} for

7Q_stands for the open set consisting of all interior point€ofwvhile 9Q  TI5 is also always on theoundary of the feasible sets defined by (30)-(31),
and Q) represent its boundary and closure, respectively. i.e., sy satisfies eithel|sy — c;|| =r; or ||s}|| = ps,Vi=1,..., M.



X Q is an empty set X

© (d)

Fig. 3. Four cases of the feasible $&t(a) Case 10 < p < ||c||—7. (b) Case Il:\/||c[|2 — 72 < p < ||c||+7. (c) Case ll:||c|]|—7 < p < /[[c][|2 — r2.
(d) Case IV:||c|| 4+ < p, which corresponds to the feasible $&being empty. In the first three cases (a)-(c), the globahugtisolution resides in a subset
© of the boundary of2, which is depicted by the red-colored curveD B in Case |,EGF in Case I, AEGFB in Case lll, respectively. In the above
plots, O is the origin; C' is the center of the circlds — c|| = r; A and B are the two tangent points residing in the cirfiie— c|| = r; E and F' are the
intersection points of the two circlds — c|| = r and||s|| = p; the ray starting fromO and passing throught’ intersects the circldis|| = p at G, and the
circle ||s — c|| = r at D and D’. Finally C’ is the midpoint betwee® and C'.

corresponding Lagrange multiplier = 0, and the system + (asz® + asz’y + auxy”® + azy® + frazy) A + (aex + ary)zy
of (35)-(37) is simplified to:
whereA := 22 4 32, and the parameter, i = 1,2, 3, and

Vo(s™) +p* (s* —c) = 021 (38) «j, j=1,...,8, are known coefficients expressed in terms
|s* — CH2 —r2=0 (39) of A\, Xo, c1, 09, IidO'JQ, andfi(;a;Q.
) ) o In order to obtain all the critical points dfl;, we need
C_:Iearly, (39) is a 2nd-order polynomial equation in they <ojve the system of polynomial equatiorfig(z,y) = 0
variablesz andy, i.e., and fo(z,y) = 0 analytically [see (40) and (42)]. Although
0=folz,y) = ( —c1)® + (y — ¢2)® — r? (40) f2(z,y) is independent of the measurement type, y) is a
function of k4 andky. Additionally, as it will become evident,
Since we aim at transforming (38) into a polynomial equdhe total degree of (z, y) depends om\; — .. (Note that in
tion only containingr andy, we eliminatex* by multiplying Lemma 2 it is assumed that, > \2). In what follows, we

both sides of (38) with{s* — ¢)" C (%), which yields: first present the solution of the system of bivariate polyram
- equations (40) and (42) under the assumpiipn- A\ for each
(s*—¢c)' C (5) Vio(s*) =0 (41) different type of measurement (see Sections IV-A1-1V-A3),

and then address the case)af= )\, (see Section 1V-A4).

Note that (41) is equivalent to the following bivariate . . L
polynomial equation (see Appendix C): 1 Dlstance-and_-Bearlng Observat_lons. When the sensor
measures both distance and bearing to the target, or equiva-
0= fi(z,y) = BasxyA® + (asz + ary + B2)zyA® (42) lently, kg = kg = 1, it can be shown (see Appendix D) that



Bi #0,i=1,2,3, anda; # 0,5 = 1,...,8. Therefore,f; II, for the casess = kg = 1, \1 > Ao, andp < ||c|| — 7.

[see (42)] is an 8th-order polynomial in the variableandy. 2) Bearing-Only Observation: When only a bearing mea-
To solve fi = fo = 0 analytically, we first treatr as surement is available, i.exqy = 0,x¢ = 1, it can be shown

a parameter and rewrite (42) as a sumgemonomials in (see Appendix E) thatis = ag = oy = 0, and 5> > 0.

decreasing order: Thus, f1(x,y) [see (42)] can be simplified into the following

43) 6th-order bivariate polynomial:

) . . 0= fi(z,y) = PaxyA’ (47)
where y;, ¢ = 0,...,7, are coefficients expressed in terms+ (a63® + asay + auzy® + asy® + Fray)d + (ass + cng)a
of A\, A\e,c1,c0,0,%,0,%, andx (see Appendix D for the 0 ST YT oaty sy ey 2 192y

Fr=x7y"+x6y° +x5u° +xayt + X397 + x2u + X1+ X0

specific expressions of;, : = 0,...,7). Similarly to the case of distance-and-bearing observation
Similarly, (40) can be rewritten as: we rewrite f; as:
fa = my® +my+m (44) A=+ Gy + G+ QP +Gu+ G (48)
where where(;, i =0,...,5, are coefficients expressed in terms of

A, A2, c1, 0,0, 2, andz (see Appendix E).
_ _ .2 2 2 2 1,12,€1,€2,09 ,
m=1 m=—2c, mo=2"—2cr et - (45 gha gyivester matrix of; and f, [see (40) and (48)] with
Thus, the Sylvester matrix of, and f with respect toy, respect tay is the following7 x 7 matrix, whereno, 11,7, are
denoted asSyl(fi, f2;y), is the following9 x 9 matrix [28, defined in (45):
ch. 3J: ¢ -
5

_ _ T2
X7 72 G G M M2
iéﬁ §<<7 e 3 G Mmoo M M
5 6 Mo M 712
X1 X5 n MmN SYI(f1, f25) = |2 G3 n M N2
SYI(f1, f259) = |x3 X MmN G G Mo M 72
X2 X3 Mo T 2 G G Mo
X1 X2 o M 72 Co 0
X0 X1 Mo M - -
L Xo o] The resultant off; and f, with respect toy is a 6th-order

The resultant off, and f» with respect toy, denoted Univariate polynomial:

as Req f1, f2;y), is the determinant of the Sylvester matrix ,_ ., \_ N W i o
Syl(f:(fg;y). F)urthermore, note that sinog, i = 0,...,7, Offj(x)*ReS(fl’fQ’y)'fdet(Syl(fl’h’y))7].2::0%36 “49)
and no are polynomials ofr, Req fi, f2;y) is also a poly- wherevy;, j =0,...,6, are known coefficients expressed in
nomial of 2 only. Hence, by employing the Sylvester resulterms of);, A2, c1, c2, 0, 2, andr. The real roots off; are the
tant [28, Ch. 3], we are able to eliminate variaplérom (43) real eigenvalues of thé x 6 companion matrix¥:

and (44), and obtain the following 10th-order univariatéypo
A . _ 0 —0/ e
nomial in variablez:
10 o 10 —1/v6
0=fs(x)=Regf1, fo;y) :=deSYI(f1, fa;9)) =Y _ ;2 (46) B :
=0
wherev;, j =0,...,10, are known coeﬁicieﬁts expressed in 1 —¥s/vs
terms of)\l,)\Q,cl,cQ,cr;Q,o;z, andr. Oncex is determinedy can be computed from (40), and

The roots of the univariate polynomigi correspond to the those pairs ofz y|T falling on the arcADB are included in
10 eigenvalues of the associatéd x 10 companion matrix the set=;, which has at most 12 elements.
T [29]: Finally we evaluate the objective functigfy(s) [see (32)]
at all the critical points in=; and select the one with the
smallest objective value as the global optimal solutiorilgf
for the casexy = 0,k = 1, A1 > Ao, andp < ||c|| — .
: 3) Distance-Only Observation: When the sensor can only
L —v9/70 measure its distance to the target, ire;,= 1,59 = 0, it can
5& shown (see Appendix F) that the coefficients appearing in
1(x,y) [see (42)] are:

0 —Y0/710
1 0 —71/7Y10

Note also that we only need to consider the real solutio
of (46). Oncer is determinedy is computed from (40), which
can have at most 2 real solutions for every real solution P3 <0, ag=—c1fs, ar=—cfs
In addition, from Lemma 3, we only need to consider those
critical points belonging to the arc ADB. Thus the sef;
consisting of all critical points* = [z y|*, has at most 20  Therefore, (42) can be simplified into the following 8th-
elements. order bivariate polynomial:

The final step is to evaluate the objective functifiyis . B 2 2 2
[see (32)] at all the critical points i and select the ogm}ith 0= filz,y) = BsAay(a” +y" — ez — e2p) (50)
the smallest objective value as the global optimal soludbn  Since A = 22 4+ %2 > 0 and 83 < 0, the roots off; must

Bo=B1=as=as=au=a3=az=0a; =0
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(@) (b) () (d)

Fig. 4. Critical points for single-sensor target trackinghvistance-only observations. (@ax(|c1 |, |c2|) < r: There exist six critical points4,B,I,1’,.J,J’.
(b) |c2| <7 < |e1]: The four critical points ared,B,1,I'. (c) |c1| < r < |c2]: The four critical points ared,B,J,J’. (d) min(|c1],|c2|) > r: Only A and
B are real critical points, and there exists no real solutiatisfying £2(x,y) = 0 and fa2(x, y) = 0 simultaneously.

satisfy either one of the following two polynomial equations:{, = fo = 0 depends onc;|, |c2|, and r. Specifically, if
B o 9 max(|c1|, [e2]) < r [see Fig. 4(a)], there are four real solutions

0=&(wy)=2"+y" —cw—cay O (7,7,7,0) in Z1,. If es] < r < |ea] [se€ Fig. 4(b)]E1,

0==&(z,y) =2y (52) only consists ofl and I'. Similarly, if |c;| < r < |co| [see

Thus, the set of all the critical points givenF'g' 4(c)], only J and J’ are valid solutions irEy,.. Finally,

a distance-only measurement &, U Z,,, where Whenmin(jei[es]) > r [see Fig. 4(d)],E:, becomes an
2 = {(@y)a(ey) = fo(e,y) =0} and =, = empty set, i.e., there exists no real solution that can Kulfil
{(z.9)[&(,y) = fo(z,y) =0}. Note though that tne ¢z =0andf =0simullaneouslty. =~

set of possible global minim&,, contains only the critical !N Summary=;, containing all the critical points in the arc
points that belong to the atd DB (see Lemma 3), and thus“}P B, iS @ subset oE1; U=, which has at most six elements
=, is a subset oEy; UZ,,. (A,B,I,I',J,J"). The final step is to evaluate the objective

. _ function see (32)] at all the critical points i&;, and
In order to determine the elements &f;, we note that Jo(s) [ (32)] P !

. . select the one with the smallest objective value as the globa
(geome_trlcally)gl [see (51)].andf2 [;ee (49)] describe two optimal solution oflIs, for the case«y = 1,k = 0, A1 > Ao,
circles in the plane whose intersection points belon&tp

. - = . andp < |c|| — .
In Appendix G, it is shown thaE;; contains exactly two real

elements, which correspond to the two tangent paoihtand A M = A = X Inthe previous sections, we have
B, shown in Fig. 3(a). The Cartesian coordinatesicind B analyzed and presented the solutions for the three obgarvat

. . models under the assumption > \,. We hereafter consider
A dix G): ) .
are (see Appendix G) the special casg; = X\ = ), i.e., A = A7 'I.
TA|_ o CQS(<PC —w) TB|_ CQS(<PC + w) (53) In Appendix H, we show that for single-sensor target track-
sin(gpc — w) sin(gc + w)

YA YB ing with bearing-only or distance-and-bearing observetio
where [see Fig. 3(a)] fi(z,y) [see (42)J can bg tran;formed ?nto a linear equa_ti(.)n,
cox —c1y = 0, which depicts a line passing through the origin
7=l =72, pc = arctan <C_2) . w = arcsin (L) O and the cente€’ [see Fig. 3(a)]. Furthermore, the coordi-
¢ llell natessp andsp. of the two critical pointsD and D’ (obtained

by the intersection of the circle described Wy(z,y) = 0

[see (40)] with the linefi(x,y) = cox — c1y = 0), satisfy the

relation fo(sp) < fo(sp/) (see Lemma 3). Therefore, for the

bearing-only and distance-and-bearing observation nsoted

. global optimal solution ofl; is s* = sp = r&r ([|c]| —7) [see

[ . Fig. 3(a)], when\; = Xs.

= |sign(cy) (|c1| —/r? = cg) 0} i feo| <7 On the other hand, as shown in Appendix H, the objective
- T function fy(s) in (32) remains a constant and is indepen-

[zr yr]T = |sign(c;) <|c1| +4/r? —c§> O} Jif |ea] <7 dent of s for single-sensor target tracking with distance-
L only measurements. In other word8,fo(s) = 0241 when

r T
T . 5 . kg = 1,k9 = 0, \1 = Xo. Thus, the sensor can move anywhere
=10 si — /2= Jf < L ’ . : .
22 | gnlez) <|CQ| : Cl)] ferd <7 within Q. However, in order to increase the probability of

r T target re-detection at the following time steps, we reqthee
[z ys]" =10 sign(cy) <|Cz| +/1% — C%)] Jif [e1l <7 sensor to move td), which is the closest to the target point
_ g _ _ _ of Q.
where sigiiz) is the sign function of a real variable In summary, if\; = )2, the best sensing location, regardless
Note that the number of the real solutions satisfyingf the employed observation model, fis [see Fig. 3(a)], i.e.,

Next we focus orE;,.. It is straightforward to conclude from
& [see (52)] thateither x = 0 or y = 0. Substitutingz = 0
ory =0 into fo = 0 [see (40)], we obtain the following four
critical points [see Fig. 4(a)]:

[561 yI]T
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s* =sp = ”—§H(||c|| —r). where [see Fig. 3(b)]
_ <02) _ <p2+|6|2—r2)
pc = arctan| — |, w = arccos | ——————
c1 2p|icl|
. 2 _ 52 _
B. Case Il /lle||? —72 < p <lc|| +r Therefore, the sef, is augmented int&, = =, U{E, F},
As shown in Fig. 3(b), and based on Lemma 3, thwhich can have two, three, or at most four elements. The

only active constraint for Case I is the collision-avoidancd!obal optimal solution ofil; in Case Il is selected as the
constraint (34), while the maximum-speed constraint (33) $* € E2 With the smallest objective valug(s*). Note that
inactive and hence its corresponding Lagrange multiplier € sensor is not necessarily required to move at its maximum

1 = 0. Thus, (35)-(37) are simplified into: speedvmax in Case Il.
Remark 6: The preceding derivations follow the assumption
Vfo(s™) = v's™ = 0251 (34) that (i) \; > \o; and (ii) ka0, 2p? # koo, 2. In Appendix J,
||s*|\2 —p*=0 (55) we also address the special cases where\(i}= Ao; or (ii)

= kg = 1 andp = Z¢, and show thatfy(s) remains
stant along the curv€GF [see Fig. 3(b)] ifeither one
of these two conditions is satisfied. This means that anytpoin
0= fs(z,y) =% +y> - p° (56) belonging to the curvé/G'F" is aglobal optimal solution. In
such cases, we require the sensor to move to the locétion
Applying the same technique as in Case | to eliminate [see Fig. 3(b)], which is the closest point of the &G'F to
from (54), yields: C,ie.,s* =sqg= ﬁp'

()" C(5) Viols) =0 (57)

Further analysis shows that, if (i)\; > Xo; and (i) C. Caselll: |c|| —r <p <+/|c[]? —r?
k4o 2 p? # Koo, (Which is automatically satisfied for the
distance-only antj bearing-only measurement models, &ad al | o o« & must reside on the curvé EGF B, which is
holds true ifp # oL for the distance-and-bearing Observat'OEomposed of three segments, i®.~ O, UG, UOs. ©; and

m_odgl), then (57). is equivalent to_the following 2nd-ordeé2 are due to the maximum-speed constraint (33), @gds
bivariate polynomialf, (see Appendix I): due to the collision-avoidance constraint (34).
0= falz,y) = ay (58) To obtain the critical points for Case lll, we proceed as
) _ ) ~ follows: We first ignore the collision-avoidance consttgBd),

It is easy to verify that the four real SOlTUt'()nS Satffy'”%lnd calculate all critical points dff; under the maximum-
f1 [see (58)] andfs [see (56)] are{[£p 0], [0 £p]"}. gpeed constraint (33) following the same process as for Case
However,not all these critical points belong to the feasnblqsee Section IV-A). Note, however, that we only need to
region{. In particular,[—sign(c1)p 0] and[0 —sign(c2)p]"  consider those critical points that residedn and©,, which
violate the maximum-speed constraint (33) (see Appendix K} 5 gbsat =5 of Z;. Then, we ignore the maximum-speed
The remaining two pointisign(c,)p 0] and[0 sign(c2)p]"  constraint (33) and apply the same method as for Case Il (see
belong to () [see Fig 3(b)], if the following conditions are gection 1V-B) to compute the optimal solutiei of TI; over
satisfied (see Appendix K): the set©3. Following the above strategy, the $&f of all the

signic)p 0T e (p _ |Cl|)2 <r2-& (59) critical pomts for Qase iss = =3 U {sz}.. .

) T~ 9 5 o The final step is to evaluate the objective functifys)

[0 signe2)p]’ € @ = (p—le2l)” <r*—cf  (60) 4t all the critical points inZ3, and select the one with the

Hence, the seE, containing all thefeasible critical points Smallest objective value as the global optimal solutiorilgf
has at most two elements. Specifically, if both (59) and (60)
are satisfied, =, = {[sign(c1)p 0],[0 sign(cs)p]™}; if
only (59) is satisfied=, = {[sign(c)p 0]}; if only (60) is D- Case IV e[ +7 < p
satisfied =, = {[0 sign(cz)p]" }; when neither (59) nor (60)  From the geometry of Fig. 3(d), we immediately conclude
is satisfied,=, = &, which corresponds to the case shown ifyat there exists no real solution that satisfies both (33)
Fig. 3(b). _ _ _ and (34) simultaneously, i.e., the feasible $ktfor 11 is

Since the curvégG'F" is an arc of the circle defined by (55),empty. In this case, regardless of the measurement model,
it is also necessary to consider the objective value atfainge require the sensor to move ¥, as shown in Fig. 3(d),
at the two boundary point#” and F', or equivalently, the \hich ensures that (i) the sensor maintains the largestipess

Clearly, (55) is a 2nd-order polynomial equation in thggn
variablesz andy, i.e.,

As shown in Fig. 3(c), and based on Lemma 3, the optimal

intersection points of the two circlesfs —c| = r and gjstance from the target so as to avoid collision, and (ii)
[[s[l = » [see Fig. 3(b)], whose Cartesian coordinates are (Sgesafisfies the maximum-speed constraint (33). Thus, the
Appendix L): solution of II; in Case IV is [see Fig. 3(d)]:

b=z =2 [elelwiee 2] e o mom = (e )
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E. Extension to Obstacle Avoidance and Additional Kinematic V. MULTIPLE-SENSORACTIVE TARGET TRACKING:
Constraints GAUSS-SEIDEL RELAXATION

Motivated by the simplicity of the analytic-form solution
Our approach to determine the global optimal solution fdP" the single-sensor optimal target tracking (see Sed¥gn

single-sensor target tracking, as described above, caeduke r & Straightforward approach to solve the optimization peobl
ily extended to include more complicated motion constsaintll2 is to iteratively minimize its objective function [see (29)
such as limitations on the sensor's kinematics and comssraifor €ach optimization variable separately. Specifically t
imposed by obstacles. To proceed, we can employ one S§jution ofll; is acquired by employing the FyC|IC coordlnatg
multiple polynomials to describe (exactly or approximgpyel descgnt method, also referred tq as nonlinear Gauss—$e|del
the obstacles’ boundariesor simply seek the minimal circle @90rithm [30, Ch. 3], which requires to solve the following
that encloses the obstacles. From Lemma 3, the global dpptirRtimization problem at each step:
solution must be on the boundary of the feasible set. In othere OPTIMIZATION PROBLEM 4 (I14)

words, if the obstacle-avoidance constraintagtive and its ( (z+1)) ( e+)\ T
; T ; . e\t Ka, \Bi Si
associated Lagrange multiplier i®nzero, the global optimal min. tr (P<. ) fvd;

) . . . L (e+1) i o2 [ wr\T [ (et
solution must satisfy the polynomial equation describing t s; d; (si ) (si )
boundary of the obstacles, denoted®ags*) = 0. Thus, the 1
corresponding KKT necessary condition, similar to (38) ha 3J (s(_l+1)) (S<_e+1))TJT

11 K,@, 7 (3
the form: ~5 . (64)
. . . %9, (S(_l+1))T (S(_l+1))
Vfo(S ) —+ v VC(S ) = 02><1 (62) z Q3
where v* is the Lagrange multiplier. Moreover, sinegés*) st || — c” <r; and Hsﬁ””” > p;

is a polynomial,Ve(s*) is a2 x 1 vector whose components (+1)

are also polynomials ie*. To eliminatev*, we multiply both Wheres; is the sought new optimal value sf at iteration

041) - . . 4+1) . .
sides of (62) by(Ve(s*))" C(Z), which yields: 041, P is defined in (65), and\" " j =1,...,i 1,
T _ /T ands(.l),j =1i+1,..., M, are the remaining optimization vari-
(Ve(s™) € (5) Vfo(s*) =0 (63) ables, considered fixed during this step, computed sedlignti

g{,Jring the previous iterations. Note that the maﬂ?bz?Hl

IS positive definite, and in general, non-diagonal. Howgver
\}_Jgsed on Lemma 2, through a similarity transformation, the
optimization algorithm employed for a single sensor can be

Note that the only difference between (63) and (41) is th
it contains the termVc(s*) instead ofs* — c. Therefore,
we can apply the same process described in Section |
to transform (63) into a polynomial equatiof(z,y) = 0, : .
and solve the corresponding polynomial systdifx,y) = readily applied to solvel.

c(z,y) — 0 by employing the Sylvester resultant and the The optimization process in the above Gauss-Seidel
oY) = y employing y .r%axation (GSR) algorithm séquentially optimizing over
companion matrix. In fact, our approach can be generalize

to solve any optimization problem with two optimizationsl’SQ""’SM) is repeated until the maximum allowed number

; . : . N of iterations is reached (here set to 4), or the change in the
variables (i.e., 2D sensor motion), while only requiringttthe - : . .

S ; ' X objective function [see (29)] is less than 1%, whicheveosc
objective function and all constraints are expressed @@niat

functions with respect to the two variables first. Note that since the optimization process in the GSR
P ' algorithm is carried out sequentially for each variabjeits
computational complexity is onlyinear in the number of
sensors, i.e.O(M). Furthermore, it is easily implemented,
9Note that kinematic constraints can also be described asaés in the has low memory requirements and, as demonstrated in Sec-

sensor’s vicinity limiting its motion range. tion VI, it achieves the same level of tracking accuracy &s th
10since there exists a linear relation betwaeand p (see Lemma 2), any exhaustive search approach.

polynomial (p), expressed irp, preserves its polynomial property under

linear transformation, i.e.h(p) = h(C(yo)s) = c(s), and c(s) is a

polynomial with respect te. V1. SIMULATION RESULTS
Note that in (62) we only consider one constrais*) = c(x,y) = 0 _ )
as being active. In case of two (or morajtive constraintsc;(z,y) and In order to evaluate the presentednstrained optimal

¢j(z,y), the solutions that simultaneously satisfy(z,y) = ¢;(z,y) = 0 motion strategy, Gauss-Seidel Relaxation (GSR), we have
are generally discrete and finite. Thus, the optimal saluttan be easily d d . . lati . d heed
obtained by evaluating(s) at each solution and selecting the one with th&On ucted extensive simulation experiments and compaged t

smallest objective value. performance of GSR to the following methods:

wo (s v . (sg,l))TJT =y
SOV (sO) T N () +JZ=‘? 73 (ST (DY T (e T ()
) )T (6) P () )

) () 35 ()
T T
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e Grid-Based Exhaustive Search (GBES). In this case,
we discretize the feasible set of all sensors and perform ar
exhaustive search over all possible combinations of these
to find the one that minimizes the trace of the posterior
covariance matrix for the target's position estimates [259].
Ideally, the GBES should return the global optimal solution
and it could be used as a benchmark for evaluating the GSR
if the grid size is sufficiently small. However, this is diffi¢
to guarantee in practice since its computational compjéasit
exponential in the number of sensors. Hence implementing

n
=]
1

[
©
T

=
o
T

[N
I
T

[N
N
T

Trace of Covariance Matrix (m 2)
=
o] o
T

the GBES becomes prohibitive when the number of sensors 4
M, increases and/or when the size of the grid cells decreases 2
Throughout the simulations, we discretize the cufrdsee 0

Figs. 3(a)-3(c)] for each sensb(i = 1,..., M) into 24 cells
(arcs) of equal length.

e Gradient Descent with Constant Sep Sze (GDC). In order Fig. 5. [Two-sensor case] Trace of the target’s positiortquas covariance
to compare GSR with the methods proposed in [13] and [23}atix. Comparison between GBES, GDC, GSR, and RM.
we implemented the steepest-descent algorithm [27, Ch. 1]
with the same step size = 50 as in [13]. However, both [13] 200
and [23] do not address the sensors’ motion constraints.
Therefore, to account for mobility constraints, we projeath
solutions} generated by GDC back into the senserfeasible
region€;, if s¥ ¢ Q; (i=1,...,M).

e Random Motion (RM). This is a modification of an
intuitive strategy that would require the sensors to move
towards the target. In this case, however, and in order to
ensure that the sensors do not converge to the same poin
we require that at every time step sensdi-= 1,..., M)
selects its heading direction with uniform probability tmds
points within the curve® [see Figs. 3(a)-3(c)].

i
I
T

-
N
T

Trace of Covariance Matrix (m 2)
=
o o] o
T T

IS
T

N
T

A. Smulation Setup

For the purposes of this simulation, we adopt a zer@ig. 6. [Two-sensor case, Monte Carlo simulations] Aversgee of the

acceleration target motion model: target's position posterior covariance matrix in 50 expemts. Comparison
between GBES, GDC, GSR, and RM.

xr(t) =F x7(t) + G w(t) (66)
where The duration of the simulations is 5 sec (i.e., 50 time steps)
0 010 0 0 x(t) At every time step, we employ the methods described (i.e.,
F_ 0 0 01 G 0 0 ~yr(®) GBES, GDC, GSR, and RM) to calculate the next sensing
1o 00 of G |1 of W)= ar(t) |’ location of each sensor.
0 0 0 O 0 1 yr(t)
and w(t) = [w,(t) w,(t)]" is a zero-mean white GaussiarP- T/g€t Tracking with 2 Sensors (Homogeneous team)
noise vector with covariancg [w(t)w™ (t')] = gL,8(t — t'), We first investigate the scenario where 2 identical sensors

q =1, andd(t—t') is the Dirac delta. In our implementation track a moving target with distance-and-bearing obseonati
we discretize the continuous-time system model [see (6&)e., k4, = ko, = 1, i = 1,2). The noise variances of the

with time stepdt = 0.1 sec. measurements al; = diag(o , 05 ) with 07 =4 m?, and
The initial true state of the target isr(0) = [0,0, -8, 6] . ag =0.5rad?, i=1,2.
The initial estimate for the target's state #,(0/0) = The time evolution of the trace of the target's position

[2,—2,0,0]T. This can be obtained by processing the firstovariance in a typical simulation is shown in Fig. 5. As
measurements from the sensors at time-step 0. At the begirpected, the performance of GSR and GBES is improved
ning of the experiment, the sensors are randomly distributeompared to the case of GDC, and is significantly better
within a circle of radius 5 m, which is at a distance of abouhan that of the non-optimized case RM. Additionally, the
20 m from the target'’s initial position. The maximum speed faincertainty in the target's position estimates (trace df th
each sensor is set to 12 m/sec, i.e., the largest distanta theovariance matrix) achieved by the proposed GSR motion
sensor can travel during any time step is 1.2 m. The minimwstrategy is indistinguishable of that of the GBES, at a cost
distance between the target and sensors is set 02 m. linear, instead of exponential, in the number of sensoreséh
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Fig. 7. [Two-sensor case] Trajectories of the two sensard tlae actual and estimated trajectories of the target, whgsloying as motion strategy (a) GBES,
(b) GDC, (c) GSR, and (d) RM. The ellipses denote thet®unds for the target’s position uncertainty at the cowasjng time steps.

results are typical for all experiments conducted and are
summarized, for 50 trials, in Fig. 6.

101
Fig.s 7(a)-7(d) depict the actual and estimated trajeztafi ol L _—f—_ggis
the target, along with the trajectories of the two sensoherw ol ,"\’ L X GSR
employing as motion strategy GBES, GDC, GSR, and RM, i D Rl RM

respectively. As evident, the accuracy of the target’s tjsi
estimates for GSR is better than the case of GDC or RM,
and almost identical to that of GBES. Additionally, the EKF
produces consistent estimates for GSR, in other words, the
real target’s position is within thec3ellipse centered at the
target’s estimated position.

Norm of Errors (m)

Finally, we plot the 2-norm of the estimation error between
the true target position and its posterior estimate in Fig. 8
when employing as motion strategy GBES, GDC, GSR, and
RM, respectively. As evident, the estimates produced by RM . 8. [Two-sensor case] 2-norm of the actual error betwtbentarget's
have the largest error. NOte _that the other three methqgiiion estimate and its true value. Comparison betweeBESEDC, GSR,
generate comparable estimation performance through mast RM.
time steps, while GSR slightly outperforms GDC between the
time interval 2 to 3 sec (i.e., time steps 20 to 30).
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Fig. 10. [Three-sensor case] Trajectories of the threecssnand the actual and estimated trajectories of the tawgetn employing as motion strategy
(a) GBES, (b) GDC, (c) GSR, and (d) RM. The ellipses denote3théounds for the target’s position uncertainty at the cowasng time steps.
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Fig. 9. [Three-sensor case] Trace of the target's posit@stgsior covariance

matrix. Comparison between GBES, GDC, GSR, and RM.

C. Target Tracking with 3 Sensors (Heterogeneous team)

moving target with a mixture of relative observations. Iisth
case, sensar-can measure both distance and bearing to the
target ¢4, = kg, = 1), and its measurement noise covariance
is set toR; = diag(c3 ,05, ) with 0] =4 m? andoj =
0.5 rack. On the other hand, sens®rean only record bearing
observations {5, = 0,k9, = 1) with measurement noise
varianceo; = oj /2 = 0.25 rad®, while senso® only has
access to relative distance measuremenjs € 1, kg, = 0)
with noise variancer;, = 03 /2 =2 m”.

Fig.s 10(a)—10(d) depict the actual and estimated trajesto
of the target, along with the trajectories of the three sexso
when employing as motion strategy GBES, GDC, GSR, and
RM, respectively. As evident, the accuracy of the target's
position estimates for GSR is better than that of GDC or RM,
and almost identical to that of GBES. Furthermore, the EKF
estimates for the sensors that employ the GSR motion syrateg
are consistent.

Interestingly, in this case for both the GBES and GSR
motion strategies, sensor-2, which only measures relative

We hereafter examine the performance of the GSR motibearing, immediately starts following the target, andratits
strategy for a heterogeneous team of 3 sensors trackingoaminimize its distance to it. The reason for this is the



16

TABLE |

5¢ . COMPUTATIONAL TIME (SEC)
sk ,‘.\ —O— GBES
' X L e [ M [JGBES] GDC [ GSR| RM |
ar 0
2 0.1539| 0.0002489| 0.0011| 0.00007053

35

3 8.9945| 0.0002947| 0.0014| 0.00007106
10 N/A 0.0008 | 0.0047| 0.0001263
20 N/A 0.0018 | 0.0109| 0.0004553
30 N/A 0.0024 | 0.0153| 0.0004853
40 N/A 0.0027 | 0.0185| 0.0003653
50 N/A 0.0033 | 0.0227| 0.0004121
60 N/A 0.0040 | 0.0274| 0.0005056
70 N/A 0.0045 | 0.0315| 0.0005477
80 N/A 0.0052 | 0.0362| 0.0006736
90 N/A 0.0059 | 0.0406| 0.0007331
100 N/A 0.0066 | 0.0450| 0.0008845

w
D"

Norm of Errors (m)
N
o

N
T

=
13
T

[N
T

0.5

Fig. 11. [Three-sensor case] 2-norm of the actual error éetwthe target's
position estimate and its true value. Comparison betweeBSEDC, GSR,
and RM.

0.05

0.045 3
following: As shown in Lemma 3, although the information 00sl x
contributed by a distance measurement (i.e., the t&érgéls in oozl x
the proof of Lemma 3) is independent of the relative distance '
|s|| between the target and the sensor, the information from a

bearing measurement (i.e., the te% % in the proof of

Lemma 3) increases as the relative distarjedl, decreases.
Therefore this prompts sens®to approach the target as close 0.015¢ X
as possible. oorf X

Finally, we note that the time evolution of the trace of the 0,005k
target’'s position covariance matrix is similar to that otth ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
two-sensor case, and is illustrated in Fig. 9. Furthermibre, 1002 %0 A en B o
2-norm of the estimation error is depicted in Fig. 11.

o

o

@
T

0.0251

o
=}
[N

Running Time (sec)

Fig. 12. CPU time vs. number of sensors, when employing GSRat®n
. ] strategy.
D. Scalability and Run-time

Contrary to the GBES method, which has computational and i , i
memory requirements exponential in the number of senso'i%? GSR performance (in terms of CPU running time) to be
the complexity of the GSR algorithms is only linear. In ordefompared to that of the GDC.
to corroborate our theoretical analysis, we have evalutted
computation time required by the four algorithms (GBES, VII. EXPERIMENTAL RESULTS
GDC, GSR, and RM) for the case of a homogeneous sensokVe hereafter describe one of the experiments performed to
team ¢ = 4 m* andoj = 0.5 rad®, i = 1,...,M) validate the performance of our proposed GSR algorithm. Our
tracking a moving target. Specifically, we have examined tlperimental setup is shown in Fig. 13, where a team of three
scalability of our algorithms by varying/ from 2 to 100. Pioneer Il robots are deployed in a rectangular region @& siz
These results are summarized in Table I. In contrast, duedpproximatelyt m x 3 m. In Fig. 13, the target is shown at
its exponential computational complexity, we are only able the bottom right, while the other two Pioneers are acting as
apply GBES to teams of up to 3 sensors. tracking sensors. An overhead camera is employed to provide

Additionally, we plot the computational time with respecground truth for evaluating the estimator’s performanaced®
to the number of sensors in Fig. 12, when employing GS$, rectangular boards with specific patterns (see Fig. E3) a
as motion strategy. The plot clearly validates the claint themounted on top of the Pioneers, and the pose (position and
the GSR algorithm has linear, in the number of sensoiientation) of each Pioneer, with respect to a global frafe
computational complexity. Finally, we should note that theeference, is computed from the captured images.
main reason for the slower performance of the GSR algorithmin the experiment, we adopt a zero-acceleration target
(when compared to the GDC) is that we directly emplognotion model, where the target moves with constant speed of
the MATLAB built-in function to compute the eigenvaluesapproximatelyd.1 m/sec. The process noise(t) [see (66)] is
associated with the companion matrices, which improves thesumed to be a zero-mean white Gaussian noise vector with
numerical accuracy at the expense of additional prepromgsscovariancek [w(t)w™ (¢')] = 107%I,6(¢t — ¢). In our imple-
steps. One of our future research direction is to improveentation, the sampling time is setdb= 0.5 sec. The initial
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Fig. 13. [Two-sensor case, experimental setup] Three Biorabots, each
with a pattern board attached on its top. The target is ldcatethe bottom Fig. 14. [Two-sensor case, experimental result] Trace eftéinget’s position
right of the image, while the other two robots act as traclsegsors. posterior covariance matrix, when employing GSR as mottostesyy.

true state of the target, computed from the overhead caiisera,
x7(0) = [0.23,0.16,0.05,0.01]T, while the initial estimate for
the target's state is set tor(0/0) = [0,0,0,0]T. At the begin-
ning, the two sensors are deployedpat (0) = [0.20, 1.69]T
andps, (0) = [2.34,0.17]T, respectively. The maximum speed
for each sensor is set to 0.12 m/sec, and the minimum distanc
between the target and sensorgis- 1 m. We consider the
scenario where each sensor measures both relative distanc
and bearing to the target (i.exy, = ko, = 1, i = 1,2).
The_se relgtive measurements_are generated synthetiqally b sl ssose XX&XX)&

adding noise to the relative distance and bearing calallate ok ) e 2
from the Pioneers’ pose estimates using the overhead camer: . ‘ L e 5000%ee R K% s
In this experiment, the standard deviations of the distance 0 ° Y ey P » %0
and bearing measurement noise are set o= 0.05 m and

og, = 0.05 rad,i = 1,2, respectively. Fig. 15. [Two-sensor case, experimental result] 2-Normhef érror of the
grget’s position posterior estimates, when employing GSRotion strategy.

0.2r

0.15

Norm of Errors (m)

0.1f

X

The duration of the experimentis 30 sec (i.e., 60 time step
At every time step, we employ the GSR method to calculate
the next best sensing location of each sensor.

Fig. 14 depicts the time evolution of the trace of the tagget’ 2} Target tue 1aieton] mopor 1
position covariance, which shows that at steady state, the -b-;arsettleft_tra{ectow END 5
standard deviation of the estimation error along each timec | ,Q | - Robot 2 rajectony Vs
is around 0.02 m. The real estimation error, computed as 15¢ T% o 5
the 2-norm between the target's estimated and true positior QD550

Robot 1
(obtained from the overhead camera), is shown in Fig. 15. START

As evident, the estimation error, when employing the GSR-
based motion strategy, is immediately reduced from 0.28 m
to 0.04 m, and is less than 0.05 m for most of the remaining
time steps.

y (m)
[

Robot 2

0.5 START

Target

Fig. 16 depicts the actual and estimated trajectories of the Jarget

target, along with the real trajectories of the two sensehgn 0 6/ v : " é .
employing the GSR-based motion strategy. Again, as was the X (m)

case in the simulations, the EKF produces consistent egtima

for GSR, i.e., the real target's position is within the 8llipse Fig. 16. [Two-sensor case, experimental result] Realdtajees of the two
centered at the target's estimated position. This valglétat éesr';";ss' f‘nnodtighne ;f;‘ig'g;”iﬁ;tgﬂia;sg;rsleenc;g'?;gg%fg:’?{i”ﬁ?g?gg%
our proposed GSR algorithm is robust and applicable to rgakition uncertainty at the corresponding time steps.

systems.
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VIIl. CONCLUSIONS update equation (19) can be written as:

In this paper, we have addressed the problewcooétrained P,:jl'k+1 = P‘ll‘k +Hp R 'Hiyy (68)

K+
optimal motion strategies fdneterogeneous teams of mobile
sensors tracking a moving target usingniture of relative T .
. nga g targ . . the target, then (20) is identical to (68).
observations (i.e., distance-only, bearing-only, oratise-and- .
In the general case, when the state vector also contains

bearing). In particular, our objective is to determine thesstb higher-order derivatives of the position (e.g., velociggel-
locations that the sensors should move to at every time step {9 P g e

order to collect the most informative measurements, e, terat|on, etc.), substituting

Note that if the state vector only contains the position of

observations that minimize the trace of the target's pasiti Pl —r_ Y11 Yo 69
- - - - e =T = |y (69)

covariance matrix. In our formulation, we have explicitly Yi, Yoo

considered motion constraints on the robots (maximum sp

and minimum distance to the target), and we have shown that - ) HT. . R-'H 0

this non-convex constrained optimization problem is NReHa Hp R Hiq1 = [ 5 okt 0 2x(2N-2) }

in general. (2N—2)x2 (2N —2)x (2N —2)

. . . ) on the right hand-side of (68) yields:
In order to derive a computationally efficient solution, we

first investigated the optimal trajectory generation peoil p R ST +H;f,k+1R*1Heyk+1 Yo
for single-sensor target tracking. Despite the fact that th = F+ik+1 = YL, Yoo
constrained optimization problem is non-convex even fer th
single-sensor case, we derived its global optimal soluti(BH
analytically by (i) transforming the associated KKT optimality
conditions into a system of bivariate polynomial equationsPx1jk+1,11 = (Tu +H R He g — T12T521T1T2)
and (ii) directly solving it using algebraic geometry medso —1 T -1 -t
Furthermore, and in order to provide a real-time solution - ((P‘“““““) +He R He*’““)

}1 (70)

Employing the property of the Schur complement [34] for
e inversion of a partitioned matrix in (69)-(70), we obtai

for the multi-sensor case, we leveraged the single-sensor ]
result by relaxing the original NP-Hard problem. Specifical

we introduced an iterative algorithm, Gauss-Seidel relara APPENDIXB

(GSR), whose computational complexity is significantly éow RATIONAL FUNCTIONS fo(s*) AND V fo(s*)

compared to that of a grid-based exhaustive search (GBES)\e nereafter show thafo(s*) [see (32)] is a rational

method (linear vs. exponential in the number of robotsy,ction ins* — [z y]T, i.e.
Simulation studies show that the GSR algorithm achieves I .
the same level of tracking accuracy as GBES, while it out- oy )
. fo(s™) (71)
performs gradient-descent-based approaches. Furthermer g(s*)

performed experiments using a team of two mobile robots thghere 1 (s*) and g(s*) are polynomials inz andy, and thus
demonstrate the applicability of the GSR algorithm to real . . . .
9(s")Vh(s®) — h(s")Vg(s")

systems. Vo(s*) = — (72)
In our future work, we plan to extend our current approach 9%(s*)
and address the cases when the robots’ poses are unceitaiiso a rational function i andy.
and when multiple targets are present. Finally, we intend toTo proceed, note thafy(s*) = tr(M~!) where
investigate distributed implementations of the GSR atbami T T o7
that account for limitations on the sensors’ communication K (87) (") Ko J (s7) (") J
M=A+—F5—"F—"++ 5 — (73)

bandwidth (by transmitting only quantized functions ofithe o; (s*)T (s*) 75 ((S*)T (S*))2
measurements [31], [6]) and range (by explicitly consiaigri
the time-varying communication topology when designing th  Moreover, ttM 1) = M- ho|ds true for any nonzero

; . . det(M)- . 7
estimator [32], [33]). scalare and any invertible2 x 2 matrix M. By definings —
A e (22 + %)% > 0, we obtain [see (71) and (73)]:
APPENDIX A tr (M) = AT+ 051 + kaoy® + koo 2 (2% +4°) 7
PROOF OFLEMMA 1 det(M) = A\, "M\ ! + kaoy *rooy (2 +4°) !

—1 -2 2 2\—1 2 -2 2
Proof: The covariance matrices appearing in (20) are T [Raog (@ +y7) Ty ooy (@7 4y ) e

defined based on the following partition: + A5 [Raog *(@® + y*) 7?4 Kooy N(@” + ) TPy
p p h(s*) =tr(M) - ¢
P = [ ] 6wl P ral )
75 ’

g(s*) = det(M) - ¢
=b(z” +y%)° + bs(a” + y7)2® + ba(2® + )y
+ b3($2 + y2) + boz® + b1y?

where the2 x 2 matrix P; ; denotes the covariance for the
target'sposition estimatepr = 7 gr|", at time-steff given
measurements up to time-stgp

Employing the matrix inversion lemma [34], the covariance
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where the coefficients; (: = 1,2) andb; (j = 1,...,6) are Sinceay, aq, b1, ..., bs [See (74)] are coefficients expressed
expressed in terms of;, A2, ko, 2, and ko, 2 in terms of A1, A2, kqo; 2, and ko, 2, thus from (82) we
conclude thats;, i = 1,2,3, ande;, j =1,...,8, are also

a2 Z)\1+)\2+)\1)\2Hd0;27 al =A1)\2H90;2 ' ) 72
functions of A1, A2, ¢, ¢2, kg0 °, and kgo, .

b =1, bs = Alﬁd0;27 by = )\ZHdU(Iz (74)

b3 = )\1)\2I€d0(;2l€90';27 bz = )\2%90’52, b1 = )\1%90’52 APF’ENDlX D
and thusfy(s*) = 2= is a rational function irs*. COEFFICIENTS OF(42) FOR THE CASErq = kg = 1, A1 > Az
Since bothh(s*) andg(s*) are bivariate polynomials, their By substitutingxq = k¢ = 1 into the expressions af;,i =
derivativesVh(s*) and Vg(s*) are2 x 1 vectors with each 1,2, andb;,j =1,...,6, [see (74)], we have:
component a bivariate polynomial. Specifically,
P poly P y a2:/\1—|—)\2+/\1/\20d_2, a1 :/\1)\20'9_2
Vh(s*) = 2ho(s") [z] (75) be =1, bs=A\o,>, by= o>
. g ( ) bgz)\lAQUJQO';Q, b2:A2052, b1 :A10;2
Vg(s*) = 2go(s”) M + |:ygy(s*):| (78 thus, from (82), we conclude that in genefal+ 0,i =

. . y . - 1,23, anda; # 0,5 = 1,...,8. Additionally, 85 = az(bs —
\:,cvgirgqfo((jsef?ﬁg?j(sas)j 9x(s"), and g, (s*) are polynomials in g5) = (Aa—\1)o; 2as < 0, sinceay > 0 and); > \o. Hence,

f1 [see (42)] is an 8th-order bivariate polynomial.

ho(s*) = 2ax(2? +3°) + ay (77) Moreover, by comparing the coefficients of (42) and (43), it
o(s*) = 2bg (22 + y2) + bsz? + bay? + bs is evident thaty;, = 0,...,7, are polynomlals with re§|2ect
. b b -8 to x, whose coefficients are functions af, A2, ¢y, 2,0, %,
92(s") = bs(@” + %) + o (78) ando,? [see (74) and (82)], i.e.,
gy(s7) = ba(a® +47) + by (79)
= Psx
APPENDIXC X6 = Q7T
TRANSFORMING (41) INTO (42) Y5 = 3832° + aga® + fox + a3

By substituting the expressions &f fy(s*), Vh(s*), and
Vyg(s*) [see (72)-(76)] into (41), and setting the numerator
equal zero, we obtain the following polynomial equationhwit

X4 = 20471‘3 + ayx
X3 = 3832° + 2052 + 2B22” + (a5 + a3)z® + iz

respect tar andy: X2 = a7z’ + (ag + aq)z® + oz
= 2y — c2) [9(s")ho(s") = h(s")go(s") = h(s")ga(s")] X1 = fsa’ + aga® + for’ + asz’ + fra’ + aga®
— y(z —c1)[g(s)ho(s") — h(s")go(s") — h(s)gy(s")] (80) Xo = gz’
Rearranging terms in (80), yields: APPENDIX E
= ayh(s")[gy(s") — g=(8")] + h(s") [c22gx(s") — c1ygy(s")] COEFFICIENTS OF(42) FOR THE CASE
+ (e1y — caw) [g(s")ho(s™) — h(s")go(s } (81) kg =0,k =1, 1 > )Xo

")
g:(s*), gy(s*), and rearranging terms in (81) we obtain thé, 2, andb;,j =1,. 6, [see (74)], we obtain:
polynomial equation (342): ) 4y = A + Ao, a1 = )\1)\20_;2
0= fi(z,y) = BszyA” + (asz + ary + f2)zyA bg=1, bg=bs=0b3=0, by= )\209*2, by = )\10;2

+ (asz® + as2’®y + cuzy® + azy® + Brzy) A + (aaz 4 any)zy o .
From (82), it is easy to verify thafi; = ag = a7 = 0,

whereA := z? +y?, and and 2 = as(by — ba) = (A1 — Aa) (A1 + A2)a 2 > 0. Thus,
B3 = as(bs — bs) f} [s_ee (42)] can_be simplified into the following 6th-order
By = ay(bs — bs) + as(by — bo) bivariate polynomial [see (47)]:
; e T 0=fi(z,y) = BoxyA®
1=a l(b 21)) ) + (046503 + asz’y + ouzy® + asy® + Bizy) A + (a2x + ary)zy
g = €102(05 — 04

a7 = caaz(bs — ba) By setting the coefficients of (47) and (48) equal, we have:

ag = o [ay(bs + bg) — aa(ba + b3)] (82) (5 = Boxr + a3

as = ¢ [ag(bs + 2by — by) — a1 (b + by)] (4= aux

ay = cg [az(by — 2by — b3) + a1 (bg + bs)] (3 = 2602 + (a5 + a3)z® + fiz
ag = ¢ [az(bs 4+ b1) — a1 (be + bs)] G = (a6 + ag)z® + aqz

as = craq(bs — by) G = Boa® + asz® + ia® + aza®

ay = caai(by — by) o = agz®
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APPENDIXF conclude thaE,; contains exactly two real elements, which
COEFFICIENTS OF(42) FOR THE CASE are the two tangent pointd and B.
ka =1,k = 0,A\1 > Aa To acquire the Cartesian coordinates 4f and B [see

Based on the expressions 6§, as and as in (82), it is Fig. 3(a)], we first apply the Pythagorean theorem to thetrigh

straightforward to verify thatis = —c18; anday = —cpf;.  HanglesOAC and OBC to obtain [OA = [[OB| = 7 =
By substitutingkg = 1, kg = 0 in (74), we have: Vle|? = 2. Note that the angleslOC = COB = w =
az =\ + X2+ Moy %, a3 =0 arest (W)’ XOC = pc = arctan (ﬁ)' and
bo =1, bs=Xoy?, bi=Xoy?, bg=by=0b =0 XOA=X0C - A0C = ¢a=q¢c—w
Substituting the above;, i = 1,2, andb;, j = 1,...,6, XOB =X0C +COB = $YB =pc +w
into (82), and recalling thak; > Ao, yields: Therefore
By = as(bs — bs) = (A2 — \1)oy%az <0, oy — {xﬂ _ o4] [cos @A} . {cos(cpc — w)}
ag = —01537 a7 = 02ﬁ3 YA sin YA Sin(QPC - (U)
om0 o] oy en] [t )
and we obtain (50): B B ©
which is precisely (53).
0= fi(z,y) = 3A%zy(a® + y* — c12 — coy)
APPENDIXG APPENDIXH
CARTESIAN COORDINATES FORTANGENT POINTSA & B COEFFICIENTS OF(42) FOR THE CASEA; = Ag
We hereafter determine the elements of the Jgt = Substituting\; = A\, = X into the expressions of;,i =
{96 (z,y) = folz,y) =0} o 1,2, andb;,j = 1,...,6, [see (74)], yields:
Clearly, fo = 0 [see (40)] describes a circle in the plane, ) ) ) )
denoted a1, with radiusr and centerC, whose Cartesian az =2\ + XN"Kkqo;°, a1 = AN kgoy
coordinates arérc yc|T = c = [c1 2|t [see Fig. 3(a)]. On be =1, bs=by=\kgo,>
the other hand, by rewriting (51) as: by = /\2/£d0;2/£90;2, by — by — MN;Q
2 2 2
0=¢& (z,y) = (:v — %1) + (y - %2) - @ From (82), it is easy to verify that
it is straightforward to see th&; = 0 also corresponds to a Bs=Pa=Pr=ag=ar=az=a1 =0
circle Oz in the plane with radiug||c||, whose cente€’ [see g = = Co€ , Q5 = Qi3 = —Cp€

Fig. 3(a)] is the midpoint between the origih and C, i.e.,

ler yor]T = e = Loy c)T. By assumptiore # 0,12  Where

henceO2 and O_l are not goncentri_c, which in turn implies ¢ — g, (b5 + bg) — az(by + bs) = 2oy (14 Argoy?)?
=1;, corresponding to the intersection 6fi and Oz, has at )

most two elements. Thus f1(z,y) [see (42)] can be transformed into:

Note that bothO andC satisfy (51) and thus belong 02,
and sinceO, C’, andC are on the same line, we conclude
that the line segmeht OC is the diameter of the circl®z.
Moreover, sincé) A andOB are two tangent lines to the circle  For the single-sensor target tracking wigtther bearing-
O1, intersectingO1 at A and B respectively, both triangles only or distance-and-bearing observationg,= 1, thuse < 0.
OAC and OBC' are right triangles and share the commopdditionally, A = 22 + y2 > 0, hence,
hypotenuseOC [see Fig. 3(a)]. Now let us focus on the
right trianglesOAC. Recalling thatC” is the midpoint of the filz,y) =0 <= &Glz,y)=cz—cay=0
hypotenuse)C’, based on the median theorem, we conclude ¢ js straightforward to verify thag, depicts a straight line
that [|C" A is exactly half of |OC], i.e., [C"All = 3llc|l. passing through the origi@ and the cente€'. Therefore, the
In other words, A is located on the circle whose center igiticq points satisfyingf, = f» = 0, or equivalentlyé; —

C' and radius is3|[c|, which is preciselyO2. Therefore, ;" nct be the intersections between the line defined
A € Zy;. The same argument also applies B Since it by & = 0 and the circle described by, = 0 [see (40)].
has been established tha, has at most two elements, Wejonce by referring to Fig. 3(a), the two critical points are

H H ! H c
Note that whenc = 021, the sensor’s current location coincides Withreadlly attained ad) and ', with sp = Tell (”C” B T) and
the one-step-ahead target's estimated position, pg(k) = pr(k + 1|k), Sp/ = II_EH (HcH + r).
yielding » = 0. Th_us, the sensor will not move and will collide with the On the other hand, for the distance-only measurement
target at the next time step, i.@g(k + 1) = pr(k + 1]k). . .
134B represents the line segment with two end poirtsand B, while model, kg = 0, thuse = 0, which yields fi(z,y) = 0
||AB| denotes the Euclidean norm &fB. regardless ofr and y. Furthermore, by substituting in (32)

0= fi(z,y) = e(czzc3 — 1%y + coxy® — clyg)A
= eA*(com — c1y)
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kg = 1,k = 0, A\1 = Ao = ), it can be shown:

T T T T T T
1 ssT\ ™' Ao dss AJdss I, dss  1Jdssd
fo(s) =tr ()\_112 + —2%) =+ 20d 5 = const. At o2sTs = o2 (sTs)? At o2sTs o2 sTs
o;s'ts A+ o3 <,
= A+ o4 I
In other words,f((s) is independent of, andV fy(s) = q
0-.1, Vs. Therefore, the sensor’s location will not affect 2" , ,
the trace of the target position pos:terior covariance fer th fols) = tr (A +0°L) " = Alad2 Azad2 — const.
distance-only measurement model\if = Xy = . Alto; Aoy
Hence, f(s) remains constant along the cur&;F' [see
APPENDIX] Fig. 3(b)], if kg = ke = 1, andp = Z¢.
TRANSFORMING (57) INTO (58)
By comparing equations (41) and (57), it is obvious that (57) APPENDIXK
is a special case of (41), obtained by choosing [¢; ¢3]* = FEASIBILITY OF THE CRITICAL POINTS
[0 0]T in (41). Thus, from (82), we conclude; = 0, j = In what follows, we show that = [—sign(c;)p 0] ands =
1,...,8. Moreover, by substitutingy; = 0, j = 1,...,8, [0 —signcz)p|T violate the maximum-speed constraint (33).
in (42), or equivalently, setting; = c = 0 in (81), we obtain: To proceed, we evaluatgs — c|| at$ ands:
0 = zyh(s*) [gy(s") — g=(s")] 83) |ls—c|* = (=signc)p—1)* + & = (p+ |ea)” + 3
where the polynomialé(s*), g.(s*), andg,(s*) are defined >+ =|lcf]? > ?
i - N . 2 2
in (77)-(79). I8 —cl® = & + (— signica)p — e2)* = G + (p + |e2l)

To acquire g, (s*) — g.(s*), we substituteby, bs, ba, bs
[see (74)] into (78)-(79) and attain:
9y(s™) = g2(s™) = (N2 — A1) [raog 2 (2 + ¥2) — Kooy ?] Therefore||$ — c|| > r and||s — c|| > r, or equivalentlys
84) ands do not satisfy the maximum-speed constraint (33).
Next, let us consider-$ = [sign(ci)p 0]T. Clearly —$
where we have employed the equaliy+y* = p* [see (56)]. automatically satisfie§ — §|| = p, hence,
Note thath(s*) > 0, and if we assume\; > )\,, and o ) ) ) >
ka0 202 # rkgoy 2 (which is automatically satisfied for —S€Q = 17> —-s—c["= (p—lerl)” + 3
distance-or_lly antg bearing-orjly measurement.models, zmd alng by subtracting2 on both sides, we obtain (59).
holds true ifp # ot for the distance-and-bearing observation Applying the same argument tes = [0 sign(cz)p] T,
model), then from (84)g, (s*) — g.(s*) # 0. Hence, (83) can
be further simplified into (58), i.efi(x,y) = zy = 0. —$€Q = rP>|-s5—-c|P=cd+(p- |02|)2

yields (60).

> i+ =|le)? =

= (A2 — M) (kao g p* — Kooy %)

APPENDIXJ
SPECIAL CASES OF(83) APPENDIX L

Note that (83) remains 0 regardlesszoéndy, if and only ~ CARTESIAN COORDINATES FORINTERSECTIONSE & F

it g2(s™) = gy(s”), which [see (84)] is equivalent taither 1o coresian coordinates @ and F can be derived in
— — 0d — —

)\IL_ A2, ofr P = o fpre)'fd :'19 __1'/\ T d first & similar way asA and B in Appendix G. Referring to
et us first examinel; = A, = A. To proceed, we Irst riq 3y gince the two boundary poins and F are also

parameterlzeTthe circle [se.e (SETS)] through its polar coatdis, the intersection points of the two circless — c|| —  and

stituting s = plcosy sinp]T. After algebraic manipulation, ’

it h thatsTs — 52 ICF|| = r. Furthermore,|OC| = ||c|. Applying the
we attain, for anys such thats s = 7, law of cosines to the triangle® EC' and OFC, we obtain
—_— —_— 2 2 2
. kasst kg JssTIT - FEOC = COF = w = arccos (%) Moreover,
fols) =tr ([ N+ S =-+ 5~ — !
o;s's  oj (sTs) XOC = pc = arctan (z—f), and
_ i it const
C KaA+ 02 KgA+02p? ' XOFE =X0C - EFOC = ¢gp=¢c—@
In other words, fo(s) remains constant along the curve XOF = X0C + COF = YFr=pctw
EGF [see Fig. 3(b)] ifA; = A\. Moreover, the value of this Thus
constant depends oty and k. !
Next, we focus on the other conditior; = xy = 1, and _|rE| _ cospp| _ |cos(pc — w)
X : . =land o — |oE| |« —p |
p = 4. To proceed, we first realize that the following identity: sinpp sin(pc — )
ssT + JssTJT = (sTs)2 I,, holds true for any 2D vectas. _xr| cospp| _ [cos(pc + w)
5 e Sk = = |OF[ | .. =7 |sin(po + @)
By substitutingsq = kg = 1, sTs = p?> = Z4 into (32), and F Smer smiye ~w
0

employing the above identity, we obtain: which is precisely (61).
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Algorithm 1 Gauss-Seidel Relaxation Algorithm

Require: Sl(_o) =c, 1=1,....M
Ensure: s; =s\' ™", i =1,...,M {Minimize (29)}
repeat
for i=1to M do
(e+1\ !
Calculate( P, ) from (65)

Determines!"" from (64) {See Algorithm 2
s\ < {1 {updates;}
end for
until max. number of iterations is reached or change in the
objective function is less than 1%

Algorithm 2 Single-sensor Optimization
Require: A, \o,c, 7, p, 04,00, Kd, Ko
Ensure: s {Minimize (32), while satisfying (33)-(34)
if p <lJc|| —r then
if A1 }é Ao then
if kg = ke =1 then
Computes from (46) and (40){See Section IV-A}
else ifkg =0, kg = 1 then
Computes from (49) and (40) See Section IV-A2
else
Computes from (51)-(52), and (40){See Sec-
tion IV-A3}
end if
else
Computes = H—EH(HCH —r) {See Section IV-Ad
end if
else if \/|[c||2 — r2 < p < ||c|| + r then
Computes from (59)-(61){See Section IV-B
else if ||c|| —r < p < /|lc||? = r? then
Determine s following the strategy outlined in Sec-
tion IV-C
else
Computes = & (r + |[c[|) {See Section IV-D
end if




