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Abstract—In this paper, we study the problem of optimal
trajectory generation for a team of heterogeneous robots moving
in a plane and tracking a moving target by processingrelative
observations, i.e., distanceand/or bearing. Contrary to previous
approaches, we explicitly consider limits on the robots’ speed and
impose constraints on the minimum distance at which the robots
are allowed to approach the target. We first address the case of a
single tracking sensor and seek the next sensing location inorder
to minimize the uncertainty about the target’s position. Weshow
that although the corresponding optimization problem involves
a non-convex objective function and a non-convex constraint,
its global optimal solution can be determined analytically. We
then extend the approach to the case of multiple sensors and
propose an iterative algorithm, Gauss-Seidel-relaxation (GSR),
for determining the next best sensing location for each sensor.
Extensive simulation results demonstrate that the GSR algorithm,
whose computational complexity is linear in the number of
sensors, achieves higher tracking accuracy thangradient descent
methods, and has performance indistinguishable from that of
a grid-based exhaustive search, whose cost is exponential in the
number of sensors. Finally, through experiments we demonstrate
that the proposed GSR algorithm is robust and applicable to real
systems.

Index Terms—Mobile Sensor, Target Tracking, Distance Mea-
surement, Bearing Measurement, Gauss-Seidel Relaxation.

I. I NTRODUCTION

Optimally tracking a moving target under motion and
processing constraints is necessary in a number of applica-
tions such as environmental monitoring [1], surveillance [2],
[3], human-robot interaction [4], as well as defense applica-
tions [5]. In most cases in practice, multiplestatic wireless
sensors are employed in order to improve the tracking accuracy
and increase the size of the surveillance area. Contrary to static
sensors, whose density and sensing range are fixed,mobile
sensors (robots) can cover larger areas over time without
the need to increase their number. Additionally, their spatial
distribution can change dynamically so as to adapt to the
target’s motion, and hence provide informative measurements
about its position. Selecting thebest sensing locations is of
particular importance especially when considering time-critical
applications (e.g., when tracking a hostile target), as well
as limitations on the robots’ processing and communication
resources.

In this paper, our objective is to determine optimal trajec-
tories for a team of heterogeneous robots that track a moving

This work was supported by the University of Minnesota (DTC), and the
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target using a mixture of relative observations, including
distance-only, bearing-only, and distance-and-bearing mea-
surements. Since accurately predicting the motion of the target
over multiple time steps is impossible, we focus our attention
to the case where the robots must determine their optimal
sensing locations for one step ahead at a time. Specifically,
we seek to minimize the uncertainty about the position of
the target, expressed as the trace of the posterior covariance
matrix for the target’s position estimates, while considering
maximum-speed limitations on the robots’ motion. Addition-
ally, in order to avoid collisions, we impose constraints onthe
minimum distance between any of the robots and the target.
This formulation results in a non-convex objective function
with non-convex constraints on the optimization variables(i.e.,
the robots’ sensing locations).

The main contributions of this work are the following:

• We first investigate the case of asingle sensor and for
the first time we prove that the global optimal solution to the
active target tracking problem can be determined analytically
for arbitrary target motion models. In particular, we show that
depending on the distance between the robot and the target,
two distinct cases must be considered, each corresponding to a
different pair of polynomial equations in two variables, whose
finite and discrete solution set contains the optimal solution.

• We extend the above approach to the case ofmultiple het-
erogeneous sensors by employing the non-linear Gauss-Seidel-
relaxation (GSR) algorithm whose computational complexity
is linear in the number of sensors. Additionally, we compare
the performance of the GSR algorithm to that of a grid-based
exhaustive search (GBES), whose cost is exponential in the
number of sensors, and show that GSR achieves comparable
tracking accuracy at a significantly lower computational cost.
Moreover, we demonstrate that the GSR algorithm outper-
forms gradient-descent-based approaches and is significantly
better compared to the case where the sensors simply follow
the target.

Following a brief review of related work in Section II,
we present the formulation of the target-tracking problem in
Section III. In Section IV, the global optimal solution for a
single sensor is determined analytically, while the non-linear
GSR algorithm employed to solve the multiple-sensors case is
described in Section V. Extensive simulation and real-world
experimental results are presented in Sections VI and VII,
respectively, while the conclusions of this work and directions
of future research are discussed in Section VIII.
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II. L ITERATURE REVIEW

Although target tracking has received considerable attention,
in most cases the sensors involved arestatic and the emphasis
is on the optimal processing of the available information (e.g.,
given communication constraints [6]). In contrast to using
static sensors, the deployment ofmobile sensors (orrobots)
for tracking offers significant advantages. For example, a larger
area can be covered without the need to increase the number of
nodes in the sensing network. The idea of optimally choosing
the mobile sensors’ locations in order to maximize information
gain (also known as adaptive sensing or active perception) has
been applied to the problems of cooperative localization [7],
simultaneous localization and mapping [8], parameter estima-
tion [9], [10], and optimal sensor selection [11], [12]. In what
follows, we review single- and multi-robot tracking approaches
that usedistance-only, bearing-only, or both distance and
bearing measurements.

A. Active target tracking - distance-only observations

Yang et al. [13] present an active sensing strategy using
distance-only measurements, where both thetrace and the
determinant of the target position estimates’ covariance are
considered as the objective functions. The authors proposea
control law, with constant step size, based on thegradient of
the cost function with respect to each sensor’s coordinates.

In [14], Martı́nez and Bullo address the problem of optimal
sensor placement and motion coordination strategies forhomo-
geneous sensor networks using distance-only measurements,
where the emphasis is on the optimal sensorplacement for
(non random)static target position estimation. The objective
is to minimize thedeterminant of the covariance matrix. The
resulting control law requires that the sensors move on a
polygon surrounding the target so as the vectors from the target
to the sensors are uniformly (in terms of direction) spaced.

Recently, Stumpet al. [15] investigated the problem of
localizing a stationary target by processing distance-only
measurements from mobile sensors. The objective is to se-
lect the sensing locations such that thetime derivative of
the determinant of the target-position estimates’information
matrix (i.e., the inverse of the covariance matrix) is maximized.
The proposed control law is based on thegradient of the
cost function with respect to each sensor’s coordinates, and
is implemented in a distributed fashion. Additionally, the
expected distance measurements in the next time step are
approximated by assuming that they will be the same as these
recorded at the sensors’ current locations.

B. Active target tracking - bearing-only observations

In [16], Le Cadre proposes an approximate tracking algo-
rithm, in which asingle mobile sensor attempts to minimize
the target’s location and velocity uncertainty over a finitetime
horizon, using bearing measurements. Under the assumption
that the distance between the sensor and the target isalways
constant, the objective function (thedeterminant of the Fisher
Information Matrix – FIM) is significantly simplified, and
the resulting control law requires that the sensor switchesits
bearing rate between its upper and lower bound.

In contrast to [16], where the optimization is performed
in the discrete time domain, Passerieux and Van Cappel [17]
formulate the optimal trajectory generation forsingle-sensor
target tracking using bearing measurements in continuous
time. In this case, the target is constrained to move on a
straight line with constant velocity and the objective is to
minimize the target’s location and velocity uncertainty bymax-
imizing the FIMs’determinant over a finite time horizon. The
authors present thenecessary condition for the continuous-
time optimal sensor path based on the Euler equation.

In [18], Logothetiset al. study thesingle-sensor trajectory
optimization from an information theory perspective, where
the sensor attempts to reduce the target’s location and veloc-
ity uncertainty through bearing measurements. The authors
employ the determinant of the target’s covariance matrix
over a finite time horizon as the cost function, and compute
the optimal solution by performing agrid-based exhaustive
search. Acknowledging that the computational requirements
increase exponentially withthe number of time steps, the
authors present suboptimal solutions in [19], where thegrid-
based minimization takes place over only one time step.

Recently, Frew [20] investigates the problem ofsingle-
sensor trajectory generation for target tracking using bearing
measurements. In this case, motion constraints on the sensor’s
trajectory are explicitly incorporated in the problem formu-
lation and the objective function (determinant of the target’s
covariance matrix) is minimized over a finite time horizon
usingexhaustive search through a discretized set of candidate
sensor headings.

C. Active target tracking - distance-and-bearing observations

Stroupe and Balch [21] propose an approximate tracking
behavior, where the mobile sensors attempt to minimize the
target’s location uncertainty using distance-and-bearing mea-
surements. The objective function is thedeterminant of the tar-
get position estimates’ covariance matrix, and the optimization
problem is solved bygreedy search over the discretized set of
candidate headings, separately for each sensor. Additionally,
the expected information gain from the teammates’ actions is
approximated by assuming that their measurements in the next
time step will be the same as these recorded at their current
locations.

Olfati-Saber [22] addresses the problem of distributed target
tracking for mobile sensor networks with a dynamic commu-
nication topology. The author tackles the network connectivity
issue using a flocking-based mobility model, and presents a
modified version of the distributed Kalman filter algorithm
for estimating the target’s state. In this case, the sensorsuse
both distance and bearing measurements to a target that moves
in 2D with constant velocity driven by zero-mean Gaussian
noise, and seek tominimize their distances to the target, while
avoiding collisions.

Chunget al. [23] present a decentralized motion planning
algorithm for solving the multi-sensor target tracking problem
using both distance and bearing measurements. The authors
employ thedeterminant of the target’s position covariance
matrix as the cost function. The decentralized control law in
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this case is based on thegradient of the cost function with
respect to each of the sensor’s coordinates with constant step-
size of 1.

D. Summary

The main drawback of the previous approaches is thatno
physical constraints on the motion of the sensors are con-
sidered. The only exceptions are the works presented in [21]
for distance-and-bearing observations, and in [20] for bearing-
only observations. However, in both cases the proposed grid-
based exhaustive search algorithm, when extended to the
multi-sensor case, has computational complexityexponential
in the number of sensors, which becomes prohibitive when the
number of the sensors is large and/or the size of the grid cellis
small. In addition, teams of heterogeneous sensors using mixed
(i.e., distance and/or bearing) relative observations areonly
considered in [13], whose gradient-based algorithm can only
guarantee achievinglocal minimum, while its convergence rate
is not addressed. Moreover, analytical solutions for a single
sensor tracking a moving target are provided only for the
bearing-measurements case when the target is restricted either
to be at a constant distance from the sensor [16], or to move on
a straight line with constant velocity [17]. Lastly, extensions
of [16] and [17] to multi-sensor target tracking have not been
considered.

Compared to our previous work [24], where only distance
observations were employed, in this paper, we address the
most general case of active target tracking when processing
a mixture of relative measurements (i.e., distance and/or
bearing)1. Specifically, we first address the problem of single-
sensor target tracking where we explicitly consider constraints
on the robot’s motion by imposing bounds on its maximum
speed, as well as on the minimum distance between the robot
and the target. However, contrary to [16] and [17], we require
no particular type of target’s motion. Our main contribution is
that we derive theglobal optimal solutions for distance-only,
bearing-only, and distance-and-bearing observations, analyti-
cally. Moreover, we generalize these results to the multi-sensor
case by employingGauss-Seidel relaxation that minimizes the
trace of the target’s position estimate covariance with respect
to the motion ofall sensors in a coordinate-descent fashion.
Our algorithm applies to heterogeneous sensor teams using a
mixture of observations, has computational complexitylinear
in the number of sensors, and achieves tracking accuracy
indistinguishable of that of an exhaustive search over all
possible combinations of the sensors’ locations2.

1Our previous publication [24] and the current paper share some parts of
the problem formulation. However, our current work generalizes the results
in [24] (which are applicable solely to the case of distance-only measurements)
by providing solutions to distance-only, as well as bearing-only and distance-
and-bearing observation models. Furthermore, for the single-sensor case, the
solution strategies employed in [24] and in our current paper are fundamentally
different. While the closed-form optimal solution in [24] is determined
geometrically, our current work derives the optimal solutionalgebraically
by solving the correspondingKKT optimality conditions analytically.

2A preliminary version of this paper was presented in [25] where all sensors
can measure both distance and bearing to the target. This paper extends the
results in [25] by providing a unified framework to characterize the solutions
for the three different measurement models (i.e., distance-only, bearing-only,
and distance-and-bearing), and is applicable to heterogeneous sensor teams
which collect a mixture of observations.

III. PROBLEM FORMULATION

Consider a group of mobile sensors (or robots) moving
in a plane and tracking the position of a moving target by
processing relative measurements, consisting of distance-only,
bearing-only, and distance-and-bearing observations. Inthis
paper, we study the case ofglobal tracking, i.e., the position
of the target is described with respect to a fixed (global)
frame of reference, instead of a relativegroup-centered one.
Hence, we hereafter employ the assumption that the position
and orientation (pose) of each tracking sensor are known with
high accuracy within the global frame of reference (e.g., from
precise GPS and compass measurements).

Furthermore, we consider the case where each sensor moves
in 2D with speedvi, which is upper bounded by vimax,
i = 1, . . . ,M , whereM is the number of sensors. Therefore,
at time-stepk + 1, sensor-i can only move within a circular
region centered at its position at time-stepk with radius
vimaxδt, whereδt is the time step (see Fig. 1). In order to avoid
collisions with the target, we also require that the distance
between the target and sensor-i to be greater than a threshold
ρi, i.e., sensor-i is prohibited to move inside a circular region
centered at the target’s position estimate3 at time-stepk + 1
with radiusρi (see Fig. 1)4. Note also that since the motion of
the target can be reliably predicted for the next time step only,
our objective is to determine the next best sensing locations
for all sensors at one time step ahead.

In the next two sections, we present the target’s state
propagation equations and the sensors’ measurement models.

A. State Propagation

In this work, we employ the Extended Kalman Filter (EKF)
for recursively estimating the target’s state,xT (k). This is
defined as a vector of dimension2N , whereN − 1 is the
highest-order time derivative of the target’s position described
by the motion model, and can include components such as
position, velocity, and acceleration:

xT (k) = [ xT (k) yT (k) ẋT (k) ẏT (k) ẍT (k) ÿT (k) . . . ]T (1)

We consider the case where the target moves randomly
and assume that we know the stochastic model describing the
motion of the target (e.g., constant-acceleration or constant-
velocity, etc.). However, as it will become evident later on, our
sensing strategy does not depend on the particular selection of
the target’s motion model.

The discrete-time state propagation equation is:

xT (k + 1) = ΦkxT (k) +Gkwd(k) (2)

3Ideally, the collision-avoidance constraints should be defined using the
true position of the target. However, since true target positionis unavailable,
we instead use theestimated target position and appropriately increase the
safety distance to account for the uncertainty in this estimate.

4As explained in Section IV-E, our problem formulation can beextended
to handle additional motion constraints such as those imposed by obstacles or
the sensors’ kinematics, e.g., maximum turning rates imposed on the sensors’
motion directions. The effect of these will change the shapeof the feasible set
from a circular disk to an area determined by the turning-radius constraints.
Note, however, that this new region can also be described by polynomial
constraints, since the kinematics of a mobile robot involvesine and cosine
functions.
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Fig. 1. Illustration of thei-th sensor’s and target’s motion: Sensor-i moves
in 2D with speedvi, which is bounded byvimax. From time-stepk to k+1,
the sensor can only movewithin a circular region centered at its position at
time-stepk with radius vimaxδt. Furthermore, to avoid collision with the
target, sensor-i is prohibited to move inside a circular region centered at the
target’s positionestimate at time-stepk+1 with radiusρi. SipT is the target’s
position with respect to sensor-i. The distance measurement of sensor-i is the
norm of sipT (k + 1) plus noise, and the bearing measurement of sensor-i
is θi(k + 1) plus noise.

wherewd is a zero-mean white Gaussian noise process with
covarianceQd = E[wd(k)w

T
d (k)]. The state transition matrix,

Φk, and the process noise Jacobian,Gk, that appear in (2)
depend on the motion model used [26]. In our work, these
can bearbitrary, but known, matrices, since no assumptions
on their properties are imposed.

The estimate of the target’s state is propagated by:5

x̂T (k + 1|k) = Φkx̂T (k|k) (3)

where x̂T (ℓ|j) is the state estimate at time-stepℓ, after
measurements up to time-stepj have been processed.

The error-state covariance matrix is propagated as:

Pk+1|k = ΦkPk|kΦ
T
k +GkQdG

T
k

wherePℓ|j is the covariance of the error,̃xT (ℓ|j) = xT (ℓ)−
x̂T (ℓ|j), in the state estimate.

B. Measurement Model

Let us denote the complete set of the sensor team as
M = {1, . . . ,M}, whereM is the number of the sensors.
At time-step k + 1, based on the type of the measure-
ment that each sensor collects,M can be partitioned into
M1 ∪ M2 ∪ M3, where M1 denotes the set of sensors
that have access to both distance and bearing observations;
M2 comprises sensors that measure only bearing; andM3

consists of sensors that record distance-only measurements.
In what follows,pT (k + 1) = [xT (k + 1) yT (k + 1)]T and
pSi

(k + 1) = [xSi
(k + 1) ySi

(k + 1)]T denote the positions
of the target and thei-th sensor, respectively, expressed in the

5In the remainder of the paper, the “hat” symbol,ˆ , denotes the estimated
value of a quantity, while the “tilde” symbol,˜ , represents the error between
the actual value of a quantity and its estimate. The relationship between a
variable,x, and its estimate,̂x, is x̃ = x − x̂. Additionally, “≻” and “�”
denote the matrix inequality in the positive definite and positive semidefinite
sense, respectively.0m×n andIn represent them×n zero matrix andn×n
identity matrix, respectively.

global frame of reference. Furthermore, to simplify the nota-
tion, we introduce the following quantities (i = 1, . . . ,M ):

∆xTi
(k + 1) = xT (k + 1)− xSi

(k + 1)

∆yTi
(k + 1) = yT (k + 1)− ySi

(k + 1)

∆̂xTi
(k + 1|k) = x̂T (k + 1|k)− xSi

(k + 1)

∆̂yTi
(k + 1|k) = ŷT (k + 1|k)− ySi

(k + 1)

pi = pi(k + 1) = pSi
(k + 1)− p̂T (k + 1|k) (4)

1) Distance-and-Bearing Observation Model: At time-step
k + 1, sensor-j (j ∈ M1) records its distance-and-bearing
observations [dj(k+1) andθj(k+1)] to the target, as shown
in Fig. 1. The measurement equation is:

zj(k + 1) =

[
dj(k + 1)
θj(k + 1)

]
+

[
ndj

(k + 1)
nθj (k + 1)

]
(5)

with

dj(k + 1) =
√
∆x2Tj

(k + 1) + ∆y2Tj
(k + 1) (6)

θj(k + 1) = arctan

(
∆yTj

(k + 1)

∆xTj
(k + 1)

)
− φj(k + 1) (7)

whereφj(k + 1) is the orientation of sensor-j, andnj(k +

1) =
[
ndj

(k + 1) nθj(k + 1)
]T

is the noise in thej-th
sensor’s measurements, which is a zero-mean white Gaussian
process with covarianceRj = E[nj(k + 1)nT

j (k + 1)] =
diag(σ2

dj
, σ2

θj
), and independent of the noise in other sensors,

i.e., E[nj(k + 1)nT
i (k + 1)] = 0 for i 6= j.

The measurement of sensor-j is a nonlinear function of the
state variablexT [see (5)]. The measurement-error equation
for sensor-j, obtained by linearizing (5) is:

z̃j(k + 1|k) = zj(k + 1)− ẑj(k + 1|k)

≃ H
(j)
k+1x̃T (k + 1|k) + nj(k + 1) (8)

where

ẑj(k + 1|k) = [d̂j(k + 1|k) θ̂j(k + 1|k)]T

d̂j(k + 1|k) =

√
∆̂x

2

Tj
(k + 1|k) + ∆̂y

2

Tj
(k + 1|k)

θ̂j(k + 1|k) = arctan

(
∆̂yTj

(k + 1|k)

∆̂xTj
(k + 1|k)

)
− φj(k + 1)

Note that the measurement matrix in (8) has a block column
structure, which is given by the following expression:

H
(j)
k+1 =

[
hT
j (k + 1) 02×(2N−2)

]
(9)

where2N is the dimension of the state vector and

hj(k + 1) =
[
hdj

(k + 1) hθj (k + 1)
]

(10)

hdj
(k + 1) =

−1√
pT
j pj

pj , hθj(k + 1) =
1

pT
j pj

Jpj (11)

whereJ = C
(
−π

2

)
andC(·) is the2× 2 rotational matrix.

2) Bearing-only Observation Model: At time-stepk + 1,
sensor-ℓ (ℓ ∈ M2) only has access to its bearing measurement
θℓ(k + 1) towards the target [see (7)], and the measurement
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and measurement-error equations are:

zℓ(k + 1) = θℓ(k + 1) + nθℓ(k + 1)

z̃ℓ(k + 1|k) ≃ H
(ℓ)
k+1x̃T (k + 1|k) + nℓ(k + 1) (12)

wherenℓ(k+1) = nθℓ(k+1) is the zero-mean white Gaussian
measurement noise with varianceRℓ = E[nℓ(k + 1)nT

ℓ (k +
1)] = σ2

θℓ
, which is independent of the noise in other sensors.

As before, the measurement matrixH(ℓ)
k+1 has the following

structure:

H
(ℓ)
k+1 =

[
hT
ℓ (k + 1) 01×(2N−2)

]
(13)

hℓ(k + 1) = hθℓ(k + 1) =
1

pT
ℓ pℓ

Jpℓ (14)

3) Distance-only Observation Model: At time-stepk + 1,
sensor-ι (ι ∈ M3) only measures its distancedι(k+1) to the
target [see (6)], therefore the measurement equation is:

zι(k + 1) = dι(k + 1) + ndι
(k + 1)

and the corresponding measurement-error equation is:

z̃ι(k + 1|k) ≃ H
(ι)
k+1x̃T (k + 1|k) + nι(k + 1) (15)

wherenι(k+1) = ndι
(k+1) is the noise in theι-th sensor’s

distance measurement, which is a zero-mean white Gaussian
process with varianceRι = E[nι(k + 1)nT

ι (k + 1)] = σ2
dι

,
and independent of the noise in other sensors. Additionally, the
measurement matrixH(ι)

k+1 in (15) is given by the following
expression:

H
(ι)
k+1 =

[
hT
ι (k + 1) 01×(2N−2)

]
(16)

hι(k + 1) = hdι
(k + 1) =

−1√
pT
ι pι

pι (17)

4) Linearized Measurement-Error Equation: The overall
measurement-error equation at time-stepk + 1, obtained by
stacking all measurement-error equations corresponding to
each sensor [see (8), (12), and (15)], is:

z̃(k + 1|k) =
[
z̃T1 (k + 1|k) . . . z̃TM (k + 1|k)

]T

≃ Hk+1x̃T (k + 1|k) + n(k + 1)

with

n(k + 1) =
[
nT
1 (k + 1) . . . nT

M (k + 1)
]T

and [see (9), (13), and (16)]

Hk+1 =

[(
H

(1)
k+1

)T
. . .

(
H

(M)
k+1

)T]T
= [He,k+1 0]

whereHe,k+1 is the block element of the measurement matrix
corresponding to the target’s position:

HT
e,k+1 =

[
h1(k + 1) . . . hM (k + 1)

]
(18)

wherehi(k + 1), i = 1, . . . ,M , are defined based on the
type of the observations considered [see (10), (14), and (17)].
Note also thatR = E[n(k + 1)nT(k + 1)] = diag(Ri), i =
1, . . . ,M , due to the independence of the noise in each sensor.

C. State and Covariance Update

Once the measurements,zi(k+1), i = 1, . . . ,M , from all
the sensors are available, they are transmitted and processed
at a fusion center (e.g., one of the robots in the team), and the
target’s state estimate and its covariance are updated as:

x̂T (k + 1|k + 1) = x̂T (k + 1|k) +Kk+1z̃(k + 1|k)

Pk+1|k+1 = Pk+1|k −Kk+1Sk+1K
T
k+1 (19)

whereKk+1 = Pk+1|kH
T
k+1S

−1
k+1 is the Kalman gain, and

Sk+1 = Hk+1Pk+1|kH
T
k+1 +R is the measurement residual

covariance.
Our objective in this work is to determine the active-

sensing strategy that minimizes the uncertainty for theposition
estimate of the target. In order to account for the impact of
the prior state estimates on the motion of the sensors, we first
present the following lemma.

Lemma 1: The posterior (updated) covariance for the tar-
get’s position estimate depends on (i) the measurement sub-
matrix corresponding to the target’sposition, and (ii) the prior
(propagated) covariance sub-matrix of the target’sposition:

Pk+1|k+1,11 =
(

(

Pk+1|k,11

)−1
+H

T
e,k+1R

−1
He,k+1

)−1

(20)

whereHe,k+1 is defined in (18) andPℓ|j,11 denotes the2× 2
upper diagonal sub-matrix ofPℓ|j [see (19)] corresponding to
the covariance in the position estimates.

Proof: The proof is shown in Appendix A.
The importance of this lemma is that the optimization

algorithms presented in Sections IV-V can be derived based
on (20) for the position covariance update – instead of (19) for
the entire state covariance update – regardless of the stochastic
process model employed for describing the target’s motion.

Exploiting the fact thatR is diagonal, and substituting (18)
into (20), we obtain the following expression forPk+1|k+1,11:

Pk+1|k+1,11 =





(

Pk+1|k,11

)−1 +
∑

j∈M1





1

σ2
dj

pjp
T
j

pT
j
pj

+
1

σ2
θj

Jpjp
T
j JT

(pT
j
pj)2





+
∑

ℓ∈M2

1

σ2
θℓ

Jpℓp
T
ℓ JT

(pT
ℓ
pℓ)2

+
∑

ι∈M3

1

σ2
dι

pιp
T
ι

pT
ι pι





−1

(21)

In order to encapsulate all three measurement models (see
Section III-B) into a unified framework, we introduce two
binary variablesκdi

∈ {0, 1} and κθi ∈ {0, 1} for sensor-i,
i = 1, . . . ,M . κdi

= 1 if sensor-i can measure relative dis-
tance at time-stepk+1, otherwiseκdi

= 0; similarly, κθi = 1
if sensor-i is capable of taking a bearing observation at time-
stepk + 1, otherwiseκθi = 0. Following this convention, we
haveκdi

= κθi = 1, ∀i ∈ M1; κdi
= 0, κθi = 1, ∀i ∈ M2;

κdi
= 1, κθi = 0, ∀i ∈ M3. Using this convention, (21) can

be written as:

Pk+1|k+1,11 (22)

=

(

(

Pk+1|k,11

)−1
+

M
∑

i=1

κdi

σ2
di

pip
T
i

pT
i pi

+

M
∑

i=1

κθi

σ2
θi

Jpip
T
i J

T

(pT
i pi)2

)−1

Remark 1: Note that ∀i ∈ M2, the term σ2
di

is irrele-
vant, i.e.,σ2

di
can be set to any positive real number, since

κdi
σ−2
di

= 0 regardless of the specific value ofσ2
di

. Similarly,
σ2
θi

is irrelevant∀i ∈ M3.
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Remark 2: When sensor-i is unable to detect the target and
hence records neither distance nor bearing observations at
time-stepk+1, the correspondingκdi

andκθi in (22) are set to
zero. In this case, the target’s position posterior covariance is
independent of the variablepi. However, we still require that
sensor-i minimizes its distance (‖pi‖) to the estimated target
location, while adhering to its motion and collision-avoidance
constraints, so as to increase its probability of re-detecting the
target in the following time steps. The updated estimate of
the target’s statêxT (k+1|k+ 1) is communicated to sensor-
i by those sensors that are able to detect and take relative
measurements at time-stepk + 1. In case none of the robots
can detect the target, i.e.,κdi

= κθi = 0, ∀ i ∈ M, then
all robots propagate the previous state estimate [see (3)],and
plan their motions so as to minimize their distances from the
predicted target’s location.

In the next section, we formulate the sensors’ one-step-
aheadoptimal motion strategy as a constrained optimization
problem, and discuss its properties.

D. Problem Statement and Reformulation

As is evident from (4) and (22), after each update step the
target’s position covariance matrix will depend, throughpi, on
all the next sensors’ positionspSi

(k+1) = [xSi
(k+1) ySi

(k+
1)]T, i = 1, . . . ,M . Assume that at time-stepk, sensor-i is
located atpSi

(k) = [xSi
(k) ySi

(k)]T. At time-stepk + 1
its positionpSi

(k + 1) is confined within a circular region
centered atpSi

(k), due to the maximum-speed constraint, but
outside a circular region centered atp̂T (k+1|k) so as to avoid
collisions (see Fig. 1), i.e.,

‖pSi
(k + 1)− pSi

(k)‖ ≤ ri (23)

‖pSi
(k + 1)− p̂T (k + 1|k)‖ ≥ ρi (24)

where ri := min (vimaxδt, ‖pSi
(k)− p̂T (k + 1|k)‖) ≤

vimaxδt, i = 1, . . . ,M .
Substitutingpi [see (4)] in the above two inequalities,

yields:
∥∥pi − [pSi

(k)− p̂T (k + 1|k)]
∥∥ ≤ ri (25)

‖pi‖ ≥ ρi (26)

thus, the feasible region ofpi is inside a circle of radiusri
centered atpSi

(k) − p̂T (k + 1|k), and outside a circle of
radiusρi centered at the origin[0 0]T. Note that the estimate
p̂T (k+1|k) [see (3)] is shared among all sensors, and can be
treated as a constant at time-stepk + 1. Hence, oncepi, i =
1, . . . ,M , is determined, the location of sensor-i at time-step
k+1, pSi

(k+1), i = 1, . . . ,M , can be obtained through (4).
The problem we address in this work is that of determining

the sensors’optimal motion strategy, i.e., the set{pi, i =
1, . . . ,M}, that minimizes thetrace of the target’s position
estimate covariance matrix [see (22)], under the constraints
specified in (25)-(26):

• OPTIMIZATION PROBLEM 1 (Π1)

min.
p1,...,pM

tr

(

(

Pk+1|k,11

)−1 +
M
∑

i=1

κdi

σ2
di

pip
T
i

pT
i
pi

+
M
∑

i=1

κθi

σ2
θi

Jpip
T
i JT

(pT
i
pi)2

)−1

s.t.
∥

∥pi −
[

pSi
(k) − p̂T (k + 1|k)

] ∥

∥ ≤ ri, (27)

‖pi‖ ≥ ρi, i = 1, . . . ,M

In what follows, we apply a coordinate transformation (see
Lemma 2), to convert the objective function ofΠ1 into (28),
in which Λ is a diagonal matrix.

Lemma 2: Assume Pk+1|k,11 ≻ 02×2 is non-
diagonal, and consider the eigen-decomposition
P−1

k+1|k,11 = C(ϕ0)ΛC(−ϕ0), whereΛ = diag(λ−1
1 , λ−1

2 )
andλ1 ≥ λ2 > 0. Then

tr(Pk+1|k+1,11) = tr

(

Λ+
M
∑

i=1

κdi

σ2
di

sis
T
i

sTi si
+

M
∑

i=1

κθi

σ2
θi

Jsis
T
i J

T

(sTi si)
2

)−1

(28)
wheresi = C(−ϕ0)pi, i = 1, . . . ,M .

Proof: SubstitutingP−1
k+1|k,11 = C(ϕ0)ΛC(−ϕ0) and

pi = C(ϕ0)si in (27), employing the equalityC(−ϕ0)J =
JC(−ϕ0) which holds since both are2×2 rotational matrices,
and noting that the trace operation is invariant to similarity
transformations results in (28).

Note also that the similarity transformation does not change
the norm of a vector; thus, constraint (25) is equivalent to
‖si − ci‖ ≤ ri, with ci = C (−ϕ0)

[
pSi

(k) − p̂T (k + 1|k)
]
,

and constraint (26) is equivalent to‖si‖ ≥ ρi. Therefore,Π1

is equivalent to the following optimization problem:

• OPTIMIZATION PROBLEM 2 (Π2)

min.
s1,...,sM

tr

(
Λ+

M∑

i=1

κdi

σ2
di

sis
T
i

sTi si
+

M∑

i=1

κθi
σ2
θi

Jsis
T
i J

T

(sTi si)
2

)−1

(29)

s.t. ‖si − ci‖
2
≤ r2i , (30)

‖si‖
2
≥ ρ2i , i = 1, . . . ,M (31)

Once the optimal solution{si, i = 1, . . . ,M} is obtained,
the best sensing location for sensor-i at time-stepk + 1,
pSi

(k+1), can be calculated throughpi = C(ϕ0)si and (4).
Remark 3: The optimization problemΠ2 is a nonlinear pro-

gramming problem since both the objective function [see (29)]
and constraints [see (30)-(31)] are nonlinear functions with
respect to the optimization variables =

[
sT1 . . . sTM

]T
.

Moreover,Π2 (and equivalently,Π1) is not a convex program
since the objective function (29) is non-convex with respect to
s, and the feasible set defined by constraint (31) is not convex.

Remark 4: As shown in [24], given distance-only observa-
tions, the corresponding optimization problem, when consid-
ering maximum-speed constraints, isNP-Hard. Thus the more
general problem addressed in this paper (of which [24] is a
special case) is alsoNP-Hard in general.

The above remark establishes the fact that the problem
of optimal trajectory generation for multiple sensors with
mobility constraints that track a moving target using mixed
relative observations (i.e., distance and/or bearing), isNP-Hard
in general. Hence, finding theglobal optimal solution forΠ1

or Π2 is extremely challenging. Ideally, the optimal solution
can be determined if one discretizes the feasible set of all
sensors [see (30)-(31)] and performs an exhaustive search.This
approach, however, has computational complexityexponential
in the number of sensors, which is of limited practical use
given realistic processing constraints.

In order to design algorithms that can operate in real time,
appropriate relaxations ofΠ2 become necessary. In what
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follows, we first derive the analytic solution for the single-
sensor case (see Section IV) and based on that we propose a
Gauss-Seidel relaxation (GSR) to solve the general problem
of multiple sensors (see Section V), which has computational
complexity linear in the number of sensors.

IV. SINGLE-SENSORACTIVE TARGET TRACKING:
ANALYTICAL SOLUTION

ForM = 1, the optimization problemΠ2 described by (29)-
(31) is simplified to:6

• OPTIMIZATION PROBLEM 3 (Π3)

min.
s

f0(s) = tr

(
Λ+

κd
σ2
d

ssT

sTs
+
κθ
σ2
θ

JssTJT

(sTs)2

)−1

(32)

s.t. ‖s− c‖
2
≤ r2, (33)

‖s‖
2
≥ ρ2 (34)

In order to solveΠ3, we proceed as follows: We first de-
termineall critical/stationary points (i.e., those points which
satisfy the Karush-Kuhn-Tucker (KKT) necessary optimality
conditions [27, Ch. 3]) analytically and evaluate their objective
values. Then, as optimal solution forΠ3 we select the critical
point whose objective value is the smallest.

To proceed, we first construct the Lagrange function [27]:

L(s, µ, ν) = f0(s) +
µ

2

(
‖s− c‖

2
− r2

)
+
ν

2

(
ρ2 − ‖s‖

2
)

Based on the KKT necessary conditions, the critical points
s∗, and the associated Lagrange multipliersµ∗ and ν∗, must
satisfy:

∇f0(s
∗) + µ∗ (s∗ − c)− ν∗s∗ = 02×1 (35)

µ∗ ≥ 0, µ∗
(
‖s∗ − c‖2 − r2

)
= 0 (36)

ν∗ ≥ 0, ν∗
(
ρ2 − ‖s∗‖

2
)
= 0 (37)

Clearly (36)-(37) are degree-3 multivariatepolynomial equa-
tions in the unknownss∗, µ∗ andν∗. Furthermore, as shown
in Appendix B, bothf0 and its derivative∇f0 are rational
functions with respect tos∗, and thus (35) can be transformed
into a polynomial equality in s∗, µ∗, and ν∗. Therefore,
computing all critical points ofΠ3 is equivalent to solving
the polynomial system defined by (35)-(37). Moreover, it is
worth mentioning that unlike linear systems, in general there
exist multiple solutions for the above polynomial system. In
order to efficiently solve (35)-(37), we first prove the following
lemma:

Lemma 3: AssumeΩ̄ = Ω∪∂Ω is a compact and connected
set7 in 2D, and the originO = [0 0]T /∈ Ω̄. For anys ∈ Ω,
the line segment connectings and the origin will intersect∂Ω
at one or multiple points. Lets‡ ∈ ∂Ω denotes the closest
intersection to the origin (see Fig. 2), thenf0(s‡) ≤ f0(s).

Proof: Based on the construction ofs‡, we haves‡ = κs,
with κ ∈ (0, 1), and thus:

6To simplify notation, we drop the indices ofs1, σd1 , σθ1 , κd1 , κθ1 , c1,
r1, andρ1.

7Ω stands for the open set consisting of all interior points ofΩ̄, while ∂Ω
and Ω̄ represent its boundary and closure, respectively.

Θ

+)

s

++s
D

B
s

O

Y

__

Ω

Α

X

+

Fig. 2. Geometric illustration of Lemma 3. The global optimal solution
resides only inΘ, i.e., the portion of the boundary of the feasible setΩ̄
(depicted by the red-colored curveADB), defined by the two tangent lines
OA andOB, which is closest toO.

(s‡)(s‡)T

(s‡)T(s‡)
=

ssT

sTs
,
J(s‡)(s‡)TJT

((s‡)T(s‡))2
=

1

κ2

JssTJT

(sTs)2
�

JssTJT

(sTs)2

⇒

(

Λ+
κd

σ2
d

(s‡)(s‡)T

(s‡)T(s‡)
+
κθ

σ2
θ

J(s‡)(s‡)TJT

((s‡)T(s‡))2

)−1

�

(

Λ+
κd

σ2
d

ssT

sTs
+
κθ

σ2
θ

JssTJT

(sTs)2

)−1

⇒ f0(s
‡) ≤ f0(s)

Remark 5: Lemma 3 establishes the fact that the global
optimal solution forΠ3, when optimizing over the feasible
set Ω̄ (see Fig. 2), is always on itsboundary ∂Ω, defined
by (33)-(34), i.e.,s∗ satisfies either‖s∗ − c‖ = r or ‖s∗‖ = ρ.
Moreover, by applying the same argument as before (see
Fig. 2), it can be easily shown thatf0(s‡) ≤ f0(s̆

‡), wheres̆‡

is any other intersection point in the direction ofs‡. Therefore,
the global optimal solutions∗ resides only in the portion of
∂Ω facing the origin, denoted asΘ (see Fig. 2)8.

As shown in Figs. 3(a)-3(d), depending on the values of the
parametersc, r, and ρ, there exist four cases that we need
to consider for the feasible set̄Ω of Π3. In what follows, we
analytically solve the KKT conditions (35)-(37) for each of
the first three cases [see Figs. 3(a)-3(c)], while for the fourth
case [see Fig. 3(d)], we propose a strategy for handling the
empty (or infeasible) set̄Ω. In the ensuing derivations, we use
the definitionss∗ :=

[
x y
]T

andc :=
[
c1 c2

]T
.

A. Case I: 0 < ρ ≤ ‖c‖ − r

As shown in Fig. 3(a), the onlyactive constraint for Case I is
the maximum-speed constraint [see (33)]. Based on Lemma 3
and settingv = vmax, the optimal solutions∗ must reside
in the arcADB, whereA and B are two tangent points,
whose Cartesian coordinates are computed later on [see (53)].
Since the collision-avoidance constraint (34) isinactive, its

8It is straightforward to extend and generalize Lemma 3 to themulti-sensor
case and conclude that the global optimal solution{s∗i , i = 1, . . . ,M} for
Π2 is also always on theboundary of the feasible sets defined by (30)-(31),
i.e., s∗i satisfies either

∥

∥s∗i − ci
∥

∥ = ri or
∥

∥s∗i

∥

∥ = ρi,∀i = 1, . . . ,M .
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ω

__
D’

ϕA

ϕC

C’

ϕB
Α

D

B

O

Y

X

C

r

τ Θ

ω

r

ρ

τ

Ω

(a)

ϖ

__

ϕ
F ϕ

C ϕ
E

G

O

ϖ

X

Y

F

E

ρ

ρ

r

r

Θ

C

Ω

(b)

C

__

Θ1

Θ2

Θ3

B

Α

r

O

Y

X

ρ

E

G

ρ

r

r

r
F

Ω

(c)

C

__
is an empty set

D’

r

ρ

O

X

Y

Ω

(d)

Fig. 3. Four cases of the feasible setΩ̄. (a) Case I:0 < ρ ≤ ‖c‖− r. (b) Case II:
√

‖c‖2 − r2 ≤ ρ < ‖c‖+ r. (c) Case III:‖c‖− r < ρ <
√

‖c‖2 − r2.
(d) Case IV:‖c‖+ r ≤ ρ, which corresponds to the feasible setΩ̄ being empty. In the first three cases (a)-(c), the global optimal solution resides in a subset
Θ of the boundary of̄Ω, which is depicted by the red-colored curveADB in Case I,EGF in Case II,AEGFB in Case III, respectively. In the above
plots,O is the origin;C is the center of the circle‖s − c‖ = r; A andB are the two tangent points residing in the circle‖s − c‖ = r; E andF are the
intersection points of the two circles‖s − c‖ = r and‖s‖ = ρ; the ray starting fromO and passing throughC intersects the circle‖s‖ = ρ at G, and the
circle ‖s− c‖ = r at D andD′. Finally C′ is the midpoint betweenO andC.

corresponding Lagrange multiplierν∗ = 0, and the system
of (35)-(37) is simplified to:

∇f0(s
∗) + µ∗ (s∗ − c) = 02×1 (38)

‖s∗ − c‖2 − r2 = 0 (39)

Clearly, (39) is a 2nd-order polynomial equation in the
variablesx andy, i.e.,

0 = f2(x, y) = (x− c1)
2 + (y − c2)

2 − r2 (40)

Since we aim at transforming (38) into a polynomial equa-
tion only containingx andy, we eliminateµ∗ by multiplying
both sides of (38) with(s∗ − c)

T
C
(
π
2

)
, which yields:

(s∗ − c)
T
C
(π
2

)
∇f0(s

∗) = 0 (41)

Note that (41) is equivalent to the following bivariate
polynomial equation (see Appendix C):

0 = f1(x, y) = β3xy∆
3 + (α8x+ α7y + β2)xy∆

2 (42)

+ (α6x
3 + α5x

2
y + α4xy

2 + α3y
3 + β1xy)∆ + (α2x+ α1y)xy

where∆ := x2 + y2, and the parametersβi, i = 1, 2, 3, and
αj , j = 1, . . . , 8, are known coefficients expressed in terms
of λ1, λ2, c1, c2, κdσ

−2
d , andκθσ

−2
θ .

In order to obtain all the critical points ofΠ3, we need
to solve the system of polynomial equationsf1(x, y) = 0
and f2(x, y) = 0 analytically [see (40) and (42)]. Although
f2(x, y) is independent of the measurement type,f1(x, y) is a
function ofκd andκθ. Additionally, as it will become evident,
the total degree off1(x, y) depends onλ1 −λ2. (Note that in
Lemma 2 it is assumed thatλ1 ≥ λ2). In what follows, we
first present the solution of the system of bivariate polynomial
equations (40) and (42) under the assumptionλ1 > λ2 for each
different type of measurement (see Sections IV-A1-IV-A3),
and then address the case ofλ1 = λ2 (see Section IV-A4).

1) Distance-and-Bearing Observations: When the sensor
measures both distance and bearing to the target, or equiva-
lently, κd = κθ = 1, it can be shown (see Appendix D) that
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βi 6= 0, i = 1, 2, 3, andαj 6= 0, j = 1, . . . , 8. Therefore,f1
[see (42)] is an 8th-order polynomial in the variablesx andy.

To solve f1 = f2 = 0 analytically, we first treatx as
a parameter and rewrite (42) as a sum ofy-monomials in
decreasing order:

f1=χ7y
7+χ6y

6+χ5y
5+χ4y

4+χ3y
3+χ2y

2+χ1y+χ0 (43)

whereχi, i = 0, . . . , 7, are coefficients expressed in terms
of λ1, λ2, c1, c2, σ

−2
d , σ−2

θ , and x (see Appendix D for the
specific expressions ofχi, i = 0, . . . , 7).

Similarly, (40) can be rewritten as:

f2 = η2y
2 + η1y + η0 (44)

where

η2=1, η1=−2c2, η0=x
2 − 2c1x+ c21 + c22 − r2 (45)

Thus, the Sylvester matrix off1 andf2 with respect toy,
denoted asSyl(f1, f2; y), is the following9 × 9 matrix [28,
Ch. 3]:

Syl(f1, f2; y) =

























χ7 η2
χ6 χ7 η1 η2
χ5 χ6 η0 η1 η2
χ4 χ5 η0 η1 η2
χ3 χ4 η0 η1 η2
χ2 χ3 η0 η1 η2
χ1 χ2 η0 η1 η2
χ0 χ1 η0 η1

χ0 η0

























The resultant off1 and f2 with respect toy, denoted
as Res(f1, f2; y), is the determinant of the Sylvester matrix
Syl(f1, f2; y). Furthermore, note that sinceχi, i = 0, . . . , 7,
and η0 are polynomials ofx, Res(f1, f2; y) is also a poly-
nomial of x only. Hence, by employing the Sylvester resul-
tant [28, Ch. 3], we are able to eliminate variabley from (43)
and (44), and obtain the following 10th-order univariate poly-
nomial in variablex:

0=f3(x)=Res(f1, f2; y) :=det
(

Syl(f1, f2; y)
)

=

10
∑

j=0

γjx
j (46)

whereγj , j = 0, . . . , 10, are known coefficients expressed in
terms ofλ1, λ2, c1, c2, σ

−2
d , σ−2

θ , andr.
The roots of the univariate polynomialf3 correspond to the

10 eigenvalues of the associated10 × 10 companion matrix
Γ [29]:

Γ =




0 −γ0/γ10
1 0 −γ1/γ10

. . .
...

1 −γ9/γ10




Note also that we only need to consider the real solutions
of (46). Oncex is determined,y is computed from (40), which
can have at most 2 real solutions for every real solutionx.
In addition, from Lemma 3, we only need to consider those
critical points belonging to the arcADB. Thus the set̄Ξ1

consisting of all critical pointss∗ = [x y]T, has at most 20
elements.

The final step is to evaluate the objective functionf0(s)
[see (32)] at all the critical points in̄Ξ1 and select the one with
the smallest objective value as the global optimal solutionof

Π3, for the caseκd = κθ = 1, λ1 > λ2, andρ ≤ ‖c‖ − r.
2) Bearing-Only Observation: When only a bearing mea-

surement is available, i.e.,κd = 0, κθ = 1, it can be shown
(see Appendix E) thatβ3 = α8 = α7 = 0, and β2 > 0.
Thus,f1(x, y) [see (42)] can be simplified into the following
6th-order bivariate polynomial:

0 = f1(x, y) = β2xy∆
2 (47)

+ (α6x
3 + α5x

2
y + α4xy

2 + α3y
3 + β1xy)∆ + (α2x+ α1y)xy

Similarly to the case of distance-and-bearing observations,
we rewritef1 as:

f1 = ζ5y
5 + ζ4y

4 + ζ3y
3 + ζ2y

2 + ζ1y + ζ0 (48)

whereζi, i = 0, . . . , 5, are coefficients expressed in terms of
λ1, λ2, c1, c2, σ

−2
θ , andx (see Appendix E).

The Sylvester matrix off1 andf2 [see (40) and (48)] with
respect toy is the following7×7 matrix, whereη0, η1, η2 are
defined in (45):

Syl(f1, f2; y) =




ζ5 η2
ζ4 ζ5 η1 η2
ζ3 ζ4 η0 η1 η2
ζ2 ζ3 η0 η1 η2
ζ1 ζ2 η0 η1 η2
ζ0 ζ1 η0 η1

ζ0 η0




The resultant off1 andf2 with respect toy is a 6th-order
univariate polynomial:

0=f3(x)=Res(f1, f2; y) :=det
(

Syl(f1, f2; y)
)

=
6
∑

j=0

ψjx
j (49)

whereψj , j = 0, . . . , 6, are known coefficients expressed in
terms ofλ1, λ2, c1, c2, σ

−2
θ , andr. The real roots off3 are the

real eigenvalues of the6× 6 companion matrixΨ:

Ψ =




0 −ψ0/ψ6

1 0 −ψ1/ψ6

. . .
...

1 −ψ5/ψ6




Oncex is determined,y can be computed from (40), and
those pairs of[x y]T falling on the arcADB are included in
the setΞ̄1, which has at most 12 elements.

Finally we evaluate the objective functionf0(s) [see (32)]
at all the critical points inΞ̄1 and select the one with the
smallest objective value as the global optimal solution ofΠ3,
for the caseκd = 0, κθ = 1, λ1 > λ2, andρ ≤ ‖c‖ − r.

3) Distance-Only Observation: When the sensor can only
measure its distance to the target, i.e.,κd = 1, κθ = 0, it can
be shown (see Appendix F) that the coefficients appearing in
f1(x, y) [see (42)] are:

β3 < 0, α8 = −c1β3, α7 = −c2β3

β2 = β1 = α6 = α5 = α4 = α3 = α2 = α1 = 0

Therefore, (42) can be simplified into the following 8th-
order bivariate polynomial:

0 = f1(x, y) = β3∆
2xy(x2 + y2 − c1x− c2y) (50)

Since∆ = x2 + y2 > 0 andβ3 < 0, the roots off1 must
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Fig. 4. Critical points for single-sensor target tracking with distance-only observations. (a)max(|c1|, |c2|) ≤ r: There exist six critical points,A,B,I,I′,J ,J ′.
(b) |c2| ≤ r ≤ |c1|: The four critical points areA,B,I,I′. (c) |c1| ≤ r ≤ |c2|: The four critical points areA,B,J ,J ′. (d) min(|c1|, |c2|) ≥ r: Only A and
B are real critical points, and there exists no real solution satisfying ξ2(x, y) = 0 andf2(x, y) = 0 simultaneously.

satisfyeither one of the following two polynomial equations:

0 = ξ1(x, y) = x2 + y2 − c1x− c2y (51)

0 = ξ2(x, y) = xy (52)

Thus, the set of all the critical points given
a distance-only measurement is̄Ξ1l ∪ Ξ̄1r, where
Ξ̄1l = {(x, y)|ξ1(x, y) = f2(x, y) = 0} and Ξ̄1r =
{(x, y)|ξ2(x, y) = f2(x, y) = 0}. Note though that the
set of possible global minima,̄Ξ1, contains only the critical
points that belong to the arcADB (see Lemma 3), and thus
Ξ̄1 is a subset of̄Ξ1l ∪ Ξ̄1r.

In order to determine the elements ofΞ̄1l, we note that
(geometrically)ξ1 [see (51)] andf2 [see (40)] describe two
circles in the plane whose intersection points belong toΞ̄1l.
In Appendix G, it is shown that̄Ξ1l contains exactly two real
elements, which correspond to the two tangent pointsA and
B, shown in Fig. 3(a). The Cartesian coordinates ofA andB
are (see Appendix G):
[
xA
yA

]
=τ

[
cos(ϕC − ω)
sin(ϕC − ω)

]
,

[
xB
yB

]
=τ

[
cos(ϕC + ω)
sin(ϕC + ω)

]
(53)

where [see Fig. 3(a)]

τ =
√
‖c‖2 − r2, ϕC = arctan

(
c2
c1

)
, ω = arcsin

(
r

‖c‖

)

Next we focus on̄Ξ1r. It is straightforward to conclude from
ξ2 [see (52)] thateither x = 0 or y = 0. Substitutingx = 0
or y = 0 into f2 = 0 [see (40)], we obtain the following four
critical points [see Fig. 4(a)]:

[xI yI ]
T =

[
sign(c1)

(
|c1| −

√
r2 − c22

)
0

]T
, if |c2| ≤ r

[xI′ yI′ ]T =

[
sign(c1)

(
|c1|+

√
r2 − c22

)
0

]T
, if |c2| ≤ r

[xJ yJ ]
T =

[
0 sign(c2)

(
|c2| −

√
r2 − c21

)]T
, if |c1| ≤ r

[xJ′ yJ′ ]T =

[
0 sign(c2)

(
|c2|+

√
r2 − c21

)]T
, if |c1| ≤ r

where sign(x) is the sign function of a real variablex.

Note that the number of the real solutions satisfying

ξ2 = f2 = 0 depends on|c1|, |c2|, and r. Specifically, if
max(|c1|, |c2|) ≤ r [see Fig. 4(a)], there are four real solutions
(I, I ′, J, J ′) in Ξ̄1r . If |c2| ≤ r ≤ |c1| [see Fig. 4(b)],Ξ̄1r

only consists ofI and I ′. Similarly, if |c1| ≤ r ≤ |c2| [see
Fig. 4(c)], onlyJ andJ ′ are valid solutions in̄Ξ1r. Finally,
when min(|c1|, |c2|) ≥ r [see Fig. 4(d)],Ξ̄1r becomes an
empty set, i.e., there exists no real solution that can fulfill
ξ2 = 0 andf2 = 0 simultaneously.

In summary,̄Ξ1, containing all the critical points in the arc
ADB, is a subset of̄Ξ1l∪Ξ̄1r , which has at most six elements
(A,B,I,I ′,J ,J ′). The final step is to evaluate the objective
function f0(s) [see (32)] at all the critical points in̄Ξ1, and
select the one with the smallest objective value as the global
optimal solution ofΠ3, for the caseκd = 1, κθ = 0, λ1 > λ2,
andρ ≤ ‖c‖ − r.

4) λ1 = λ2 = λ: In the previous sections, we have
analyzed and presented the solutions for the three observation
models under the assumptionλ1 > λ2. We hereafter consider
the special caseλ1 = λ2 = λ, i.e.,Λ = λ−1I2.

In Appendix H, we show that for single-sensor target track-
ing with bearing-only or distance-and-bearing observations,
f1(x, y) [see (42)] can be transformed into a linear equation,
c2x−c1y = 0, which depicts a line passing through the origin
O and the centerC [see Fig. 3(a)]. Furthermore, the coordi-
natessD andsD′ of the two critical pointsD andD′ (obtained
by the intersection of the circle described byf2(x, y) = 0
[see (40)] with the linef1(x, y) = c2x− c1y = 0), satisfy the
relationf0(sD) ≤ f0(sD′) (see Lemma 3). Therefore, for the
bearing-only and distance-and-bearing observation models, the
global optimal solution ofΠ3 is s∗ = sD = c

‖c‖

(
‖c‖−r

)
[see

Fig. 3(a)], whenλ1 = λ2.
On the other hand, as shown in Appendix H, the objective

function f0(s) in (32) remains a constant and is indepen-
dent of s for single-sensor target tracking with distance-
only measurements. In other words,∇f0(s) = 02×1 when
κd = 1, κθ = 0, λ1 = λ2. Thus, the sensor can move anywhere
within Ω̄. However, in order to increase the probability of
target re-detection at the following time steps, we requirethe
sensor to move toD, which is the closest to the target point
of Ω̄.

In summary, ifλ1 = λ2, the best sensing location, regardless
of the employed observation model, isD [see Fig. 3(a)], i.e.,
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s∗ = sD = c
‖c‖

(
‖c‖ − r

)
.

B. Case II:
√
‖c‖2 − r2 ≤ ρ < ‖c‖+ r

As shown in Fig. 3(b), and based on Lemma 3, the
only active constraint for Case II is the collision-avoidance
constraint (34), while the maximum-speed constraint (33) is
inactive and hence its corresponding Lagrange multiplier is
µ∗ = 0. Thus, (35)-(37) are simplified into:

∇f0(s
∗)− ν∗s∗ = 02×1 (54)

‖s∗‖
2
− ρ2 = 0 (55)

Clearly, (55) is a 2nd-order polynomial equation in the
variablesx andy, i.e.,

0 = f5(x, y) = x2 + y2 − ρ2 (56)

Applying the same technique as in Case I to eliminateν∗

from (54), yields:

(s∗)
T
C
(π
2

)
∇f0(s

∗) = 0 (57)

Further analysis shows that, if (i)λ1 > λ2; and (ii)
κdσ

−2
d ρ2 6= κθσ

−2
θ (which is automatically satisfied for the

distance-only and bearing-only measurement models, and also
holds true ifρ 6= σd

σθ
for the distance-and-bearing observation

model), then (57) is equivalent to the following 2nd-order
bivariate polynomialf4 (see Appendix I):

0 = f4(x, y) = xy (58)

It is easy to verify that the four real solutions satisfying
f4 [see (58)] andf5 [see (56)] are

{
[±ρ 0]T, [0 ± ρ]T

}
.

However,not all these critical points belong to the feasible
regionΩ̄. In particular,[−sign(c1)ρ 0]T and[0 −sign(c2)ρ]T

violate the maximum-speed constraint (33) (see Appendix K).
The remaining two points[sign(c1)ρ 0]T and[0 sign(c2)ρ]T

belong to Ω̄ [see Fig 3(b)], if the following conditions are
satisfied (see Appendix K):

[sign(c1)ρ 0]T ∈ Ω̄ ⇐⇒
(
ρ− |c1|

)2
≤ r2 − c22 (59)

[0 sign(c2)ρ]
T ∈ Ω̄ ⇐⇒

(
ρ− |c2|

)2
≤ r2 − c21 (60)

Hence, the setΞ2 containing all thefeasible critical points
has at most two elements. Specifically, if both (59) and (60)
are satisfied,Ξ2 =

{
[sign(c1)ρ 0]T, [0 sign(c2)ρ]T

}
; if

only (59) is satisfied,Ξ2 =
{
[sign(c1)ρ 0]T

}
; if only (60) is

satisfied,Ξ2 =
{
[0 sign(c2)ρ]T

}
; when neither (59) nor (60)

is satisfied,Ξ2 = ∅, which corresponds to the case shown in
Fig. 3(b).

Since the curveEGF is an arc of the circle defined by (55),
it is also necessary to consider the objective value attained
at the two boundary pointsE and F , or equivalently, the
intersection points of the two circles:‖s− c‖ = r and
‖s‖ = ρ [see Fig. 3(b)], whose Cartesian coordinates are (see
Appendix L):
[
xE
yE

]
=ρ

[
cos(ϕC −̟)
sin(ϕC −̟)

]
,

[
xF
yF

]
=ρ

[
cos(ϕC +̟)
sin(ϕC +̟)

]
(61)

where [see Fig. 3(b)]

ϕC = arctan

(
c2
c1

)
, ̟ = arccos

(
ρ2 + ‖c‖2 − r2

2ρ‖c‖

)

Therefore, the setΞ2 is augmented intōΞ2 = Ξ2 ∪{E,F},
which can have two, three, or at most four elements. The
global optimal solution ofΠ3 in Case II is selected as the
s∗ ∈ Ξ̄2 with the smallest objective valuef0(s∗). Note that
the sensor is not necessarily required to move at its maximum
speedvmax in Case II.

Remark 6: The preceding derivations follow the assumption
that (i) λ1 > λ2; and (ii) κdσ

−2
d ρ2 6= κθσ

−2
θ . In Appendix J,

we also address the special cases where (i)λ1 = λ2; or (ii)
κd = κθ = 1 and ρ = σd

σθ
, and show thatf0(s) remains

constant along the curveEGF [see Fig. 3(b)] ifeither one
of these two conditions is satisfied. This means that any point
belonging to the curveEGF is a global optimal solution. In
such cases, we require the sensor to move to the locationG
[see Fig. 3(b)], which is the closest point of the arcEGF to
C, i.e., s∗ = sG = c

‖c‖ρ.

C. Case III: ‖c‖ − r < ρ <
√
‖c‖2 − r2

As shown in Fig. 3(c), and based on Lemma 3, the optimal
solutions∗ ∈ Ω̄ must reside on the curveAEGFB, which is
composed of three segments, i.e.,Θ = Θ1 ∪Θ2 ∪Θ3. Θ1 and
Θ2 are due to the maximum-speed constraint (33), andΘ3 is
due to the collision-avoidance constraint (34).

To obtain the critical points for Case III, we proceed as
follows: We first ignore the collision-avoidance constraint (34),
and calculate all critical points ofΠ3 under the maximum-
speed constraint (33) following the same process as for CaseI
(see Section IV-A). Note, however, that we only need to
consider those critical points that reside inΘ1 andΘ2, which
is a subset Ξ3 of Ξ̄1. Then, we ignore the maximum-speed
constraint (33) and apply the same method as for Case II (see
Section IV-B) to compute the optimal solutions† of Π3 over
the setΘ3. Following the above strategy, the setΞ̄3 of all the
critical points for Case III is̄Ξ3 = Ξ3 ∪ {s†}.

The final step is to evaluate the objective functionf0(s)
at all the critical points inΞ̄3, and select the one with the
smallest objective value as the global optimal solution ofΠ3.

D. Case IV: ‖c‖+ r ≤ ρ

From the geometry of Fig. 3(d), we immediately conclude
that there exists no real solution that satisfies both (33)
and (34) simultaneously, i.e., the feasible setΩ̄ for Π3 is
empty. In this case, regardless of the measurement model,
we require the sensor to move toD′, as shown in Fig. 3(d),
which ensures that (i) the sensor maintains the largest possible
distance from the target so as to avoid collision, and (ii)
it satisfies the maximum-speed constraint (33). Thus, the
solution ofΠ3 in Case IV is [see Fig. 3(d)]:

s∗ = sD′ =
c

‖c‖

(
r + ‖c‖

)
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E. Extension to Obstacle Avoidance and Additional Kinematic
Constraints

Our approach to determine the global optimal solution for
single-sensor target tracking, as described above, can be read-
ily extended to include more complicated motion constraints,
such as limitations on the sensor’s kinematics and constraints
imposed by obstacles. To proceed, we can employ one or
multiple polynomials to describe (exactly or approximately)
the obstacles’ boundaries9, or simply seek the minimal circle
that encloses the obstacles. From Lemma 3, the global optimal
solution must be on the boundary of the feasible set. In other
words, if the obstacle-avoidance constraint isactive and its
associated Lagrange multiplier isnonzero, the global optimal
solution must satisfy the polynomial equation describing the
boundary of the obstacles, denoted as10 c(s∗) = 0. Thus, the
corresponding KKT necessary condition, similar to (38), has
the form:11

∇f0(s
∗) + υ∗∇c(s∗) = 02×1 (62)

whereυ∗ is the Lagrange multiplier. Moreover, sincec(s∗)
is a polynomial,∇c(s∗) is a 2× 1 vector whose components
are also polynomials ins∗. To eliminateυ∗, we multiply both
sides of (62) by

(
∇c(s∗)

)T
C(π2 ), which yields:

(
∇c(s∗)

)T
C
(π
2

)
∇f0(s

∗) = 0 (63)

Note that the only difference between (63) and (41) is that
it contains the term∇c(s∗) instead of s∗ − c. Therefore,
we can apply the same process described in Section IV-A
to transform (63) into a polynomial equationf(x, y) = 0,
and solve the corresponding polynomial systemf(x, y) =
c(x, y) = 0 by employing the Sylvester resultant and the
companion matrix. In fact, our approach can be generalized
to solve any optimization problem with two optimization
variables (i.e., 2D sensor motion), while only requiring that the
objective function and all constraints are expressed as rational
functions with respect to the two variables.

9Note that kinematic constraints can also be described as obstacles in the
sensor’s vicinity limiting its motion range.

10Since there exists a linear relation betweens andp (see Lemma 2), any
polynomial h(p), expressed inp, preserves its polynomial property under
linear transformation, i.e.,h(p) = h (C(ϕ0) s) = c(s), and c(s) is a
polynomial with respect tos.

11Note that in (62) we only consider one constraintc(s∗) = c(x, y) = 0
as being active. In case of two (or more)active constraintsci(x, y) and
cj(x, y), the solutions that simultaneously satisfyci(x, y) = cj(x, y) = 0
are generally discrete and finite. Thus, the optimal solution can be easily
obtained by evaluatingf0(s) at each solution and selecting the one with the
smallest objective value.

V. M ULTIPLE-SENSORACTIVE TARGET TRACKING:
GAUSS-SEIDEL RELAXATION

Motivated by the simplicity of the analytic-form solution
for the single-sensor optimal target tracking (see SectionIV),
a straightforward approach to solve the optimization problem
Π2 is to iteratively minimize its objective function [see (29)]
for each optimization variable separately. Specifically, the
solution ofΠ2 is acquired by employing the cyclic coordinate
descent method, also referred to as nonlinear Gauss-Seidel
algorithm [30, Ch. 3], which requires to solve the following
optimization problem at each step:

• OPTIMIZATION PROBLEM 4 (Π4)

min.
s
(ℓ+1)
i

tr







(

P
(ℓ+1)
i

)−1

+
κdi

σ2
di

(

s
(ℓ+1)
i

)(

s
(ℓ+1)
i

)T

(

s
(ℓ+1)
i

)T (

s
(ℓ+1)
i

)

+
κθi

σ2
θi

J
(

s
(ℓ+1)
i

)(

s
(ℓ+1)
i

)T

JT

(

(

s
(ℓ+1)
i

)T (

s
(ℓ+1)
i

)

)2











−1

(64)

s.t.
∥

∥

∥s
(ℓ+1)
i − ci

∥

∥

∥ ≤ ri and
∥

∥

∥s
(ℓ+1)
i

∥

∥

∥ ≥ ρi

wheres(ℓ+1)
i is the sought new optimal value ofsi at iteration

ℓ+ 1, P(ℓ+1)
i is defined in (65), ands(ℓ+1)

j , j = 1, . . . , i− 1,

ands(ℓ)j , j = i+1, . . . ,M , are the remaining optimization vari-
ables, considered fixed during this step, computed sequentially
during the previous iterations. Note that the matrixP(ℓ+1)

i

is positive definite, and in general, non-diagonal. However,
based on Lemma 2, through a similarity transformation, the
optimization algorithm employed for a single sensor can be
readily applied to solveΠ4.

The optimization process in the above Gauss-Seidel
relaxation (GSR) algorithm (sequentially optimizing over
s1, s2, . . . , sM ) is repeated until the maximum allowed number
of iterations is reached (here set to 4), or the change in the
objective function [see (29)] is less than 1%, whichever occurs
first. Note that since the optimization process in the GSR
algorithm is carried out sequentially for each variablesi, its
computational complexity is onlylinear in the number of
sensors, i.e.,O(M). Furthermore, it is easily implemented,
has low memory requirements and, as demonstrated in Sec-
tion VI, it achieves the same level of tracking accuracy as the
exhaustive search approach.

VI. SIMULATION RESULTS

In order to evaluate the presentedconstrained optimal
motion strategy, Gauss-Seidel Relaxation (GSR), we have
conducted extensive simulation experiments and compared the
performance of GSR to the following methods:

(

P
(ℓ+1)
i

)−1
= Λ+

M
∑

j=i+1











κdj

σ2
dj

(

s
(ℓ)
j

)(

s
(ℓ)
j

)T

(

s
(ℓ)
j

)T (

s
(ℓ)
j

)

+
κθj

σ2
θj

J
(

s
(ℓ)
j

)(

s
(ℓ)
j

)T
JT

(

(

s
(ℓ)
j

)T (

s
(ℓ)
j

)

)2











+

i−1
∑

j=1











κdj

σ2
dj

(

s
(ℓ+1)
j

)(

s
(ℓ+1)
j

)T

(

s
(ℓ+1)
j

)T (

s
(ℓ+1)
j

)

+
κθj

σ2
θj

J
(

s
(ℓ+1)
j

)(

s
(ℓ+1)
j

)T
JT

(

(

s
(ℓ+1)
j

)T (

s
(ℓ+1)
j

)

)2











(65)



13

• Grid-Based Exhaustive Search (GBES). In this case,
we discretize the feasible set of all sensors and perform an
exhaustive search over all possible combinations of these
to find the one that minimizes the trace of the posterior
covariance matrix for the target’s position estimates [see(27)].
Ideally, the GBES should return the global optimal solution
and it could be used as a benchmark for evaluating the GSR,
if the grid size is sufficiently small. However, this is difficult
to guarantee in practice since its computational complexity is
exponential in the number of sensors. Hence implementing
the GBES becomes prohibitive when the number of sensors,
M , increases and/or when the size of the grid cells decreases.
Throughout the simulations, we discretize the curveΘ [see
Figs. 3(a)–3(c)] for each sensor-i (i = 1, . . . ,M ) into 24 cells
(arcs) of equal length.
• Gradient Descent with Constant Step Size (GDC). In order

to compare GSR with the methods proposed in [13] and [23],
we implemented the steepest-descent algorithm [27, Ch. 1]
with the same step sizeα = 50 as in [13]. However, both [13]
and [23] do not address the sensors’ motion constraints.
Therefore, to account for mobility constraints, we projecteach
solutions∗i generated by GDC back into the sensor-i’s feasible
regionΩ̄i, if s∗i /∈ Ω̄i (i = 1, . . . ,M ).
• Random Motion (RM). This is a modification of an

intuitive strategy that would require the sensors to move
towards the target. In this case, however, and in order to
ensure that the sensors do not converge to the same point,
we require that at every time step sensor-i (i = 1, . . . ,M )
selects its heading direction with uniform probability towards
points within the curveΘ [see Figs. 3(a)–3(c)].

A. Simulation Setup

For the purposes of this simulation, we adopt a zero-
acceleration target motion model:

ẋT (t) = F xT (t) +G w(t) (66)

where

F =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


 , G =




0 0
0 0
1 0
0 1


 , xT (t) =




xT (t)
yT (t)
ẋT (t)
ẏT (t)


 ,

and w(t) = [wx(t) wy(t)]
T is a zero-mean white Gaussian

noise vector with covarianceE
[
w(t)wT(t′)

]
= qI2δ(t − t′),

q = 1, andδ(t− t′) is the Dirac delta. In our implementation,
we discretize the continuous-time system model [see (66)]
with time stepδt = 0.1 sec.

The initial true state of the target isxT (0) = [0, 0,−8, 6]T.
The initial estimate for the target’s state iŝxT (0|0) =
[2,−2, 0, 0]T. This can be obtained by processing the first
measurements from the sensors at time-step 0. At the begin-
ning of the experiment, the sensors are randomly distributed
within a circle of radius 5 m, which is at a distance of about
20 m from the target’s initial position. The maximum speed for
each sensor is set to 12 m/sec, i.e., the largest distance that a
sensor can travel during any time step is 1.2 m. The minimum
distance between the target and sensors is set toρ = 2 m.
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Fig. 5. [Two-sensor case] Trace of the target’s position posterior covariance
matrix. Comparison between GBES, GDC, GSR, and RM.
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Fig. 6. [Two-sensor case, Monte Carlo simulations] Averagetrace of the
target’s position posterior covariance matrix in 50 experiments. Comparison
between GBES, GDC, GSR, and RM.

The duration of the simulations is 5 sec (i.e., 50 time steps).
At every time step, we employ the methods described (i.e.,
GBES, GDC, GSR, and RM) to calculate the next sensing
location of each sensor.

B. Target Tracking with 2 Sensors (Homogeneous team)

We first investigate the scenario where 2 identical sensors
track a moving target with distance-and-bearing observations
(i.e., κdi

= κθi = 1, i = 1, 2). The noise variances of the
measurements areRi = diag(σ2

di
, σ2

θi
) with σ2

di
= 4 m2, and

σ2
θi

= 0.5 rad2, i = 1, 2.
The time evolution of the trace of the target’s position

covariance in a typical simulation is shown in Fig. 5. As
expected, the performance of GSR and GBES is improved
compared to the case of GDC, and is significantly better
than that of the non-optimized case RM. Additionally, the
uncertainty in the target’s position estimates (trace of the
covariance matrix) achieved by the proposed GSR motion
strategy is indistinguishable of that of the GBES, at a cost
linear, instead of exponential, in the number of sensors. These
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Fig. 7. [Two-sensor case] Trajectories of the two sensors, and the actual and estimated trajectories of the target, whenemploying as motion strategy (a) GBES,
(b) GDC, (c) GSR, and (d) RM. The ellipses denote the 3σ bounds for the target’s position uncertainty at the corresponding time steps.

results are typical for all experiments conducted and are
summarized, for 50 trials, in Fig. 6.

Fig.s 7(a)–7(d) depict the actual and estimated trajectories of
the target, along with the trajectories of the two sensors, when
employing as motion strategy GBES, GDC, GSR, and RM,
respectively. As evident, the accuracy of the target’s position
estimates for GSR is better than the case of GDC or RM,
and almost identical to that of GBES. Additionally, the EKF
produces consistent estimates for GSR, in other words, the
real target’s position is within the 3σ ellipse centered at the
target’s estimated position.

Finally, we plot the 2-norm of the estimation error between
the true target position and its posterior estimate in Fig. 8,
when employing as motion strategy GBES, GDC, GSR, and
RM, respectively. As evident, the estimates produced by RM
have the largest error. Note that the other three methods
generate comparable estimation performance through most
time steps, while GSR slightly outperforms GDC between the
time interval 2 to 3 sec (i.e., time steps 20 to 30).
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Fig. 8. [Two-sensor case] 2-norm of the actual error betweenthe target’s
position estimate and its true value. Comparison between GBES, GDC, GSR,
and RM.
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Fig. 10. [Three-sensor case] Trajectories of the three sensors, and the actual and estimated trajectories of the target, when employing as motion strategy
(a) GBES, (b) GDC, (c) GSR, and (d) RM. The ellipses denote the3σ bounds for the target’s position uncertainty at the corresponding time steps.

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

Time (s)

T
ra

ce
 o

f C
ov

ar
ia

nc
e 

M
at

rix
 (

m
 2 )

GBES
GDC
GSR
RM

4 4.2 4.4 4.6 4.8 5
0.6

1

1.4

1.8

Fig. 9. [Three-sensor case] Trace of the target’s position posterior covariance
matrix. Comparison between GBES, GDC, GSR, and RM.

C. Target Tracking with 3 Sensors (Heterogeneous team)

We hereafter examine the performance of the GSR motion
strategy for a heterogeneous team of 3 sensors tracking a

moving target with a mixture of relative observations. In this
case, sensor-1 can measure both distance and bearing to the
target (κd1 = κθ1 = 1), and its measurement noise covariance
is set toR1 = diag(σ2

d1
, σ2

θ1
) with σ2

d1
= 4 m2 and σ2

θ1
=

0.5 rad2. On the other hand, sensor-2 can only record bearing
observations (κd2 = 0, κθ2 = 1) with measurement noise
varianceσ2

θ2
= σ2

θ1
/2 = 0.25 rad2, while sensor-3 only has

access to relative distance measurements (κd3 = 1, κθ3 = 0)
with noise varianceσ2

d3
= σ2

d1
/2 = 2 m2.

Fig.s 10(a)–10(d) depict the actual and estimated trajectories
of the target, along with the trajectories of the three sensors,
when employing as motion strategy GBES, GDC, GSR, and
RM, respectively. As evident, the accuracy of the target’s
position estimates for GSR is better than that of GDC or RM,
and almost identical to that of GBES. Furthermore, the EKF
estimates for the sensors that employ the GSR motion strategy
are consistent.

Interestingly, in this case for both the GBES and GSR
motion strategies, sensor-2, which only measures relative
bearing, immediately starts following the target, and attempts
to minimize its distance to it. The reason for this is the
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Fig. 11. [Three-sensor case] 2-norm of the actual error between the target’s
position estimate and its true value. Comparison between GBES, GDC, GSR,
and RM.

following: As shown in Lemma 3, although the information
contributed by a distance measurement (i.e., the term1

σ2
d

ssT

sTs
in

the proof of Lemma 3) is independent of the relative distance
‖s‖ between the target and the sensor, the information from a
bearing measurement (i.e., the term1

σ2
θ

JssTJT

(sTs)2
in the proof of

Lemma 3) increases as the relative distance,‖s‖, decreases.
Therefore this prompts sensor-2 to approach the target as close
as possible.

Finally, we note that the time evolution of the trace of the
target’s position covariance matrix is similar to that of the
two-sensor case, and is illustrated in Fig. 9. Furthermore,the
2-norm of the estimation error is depicted in Fig. 11.

D. Scalability and Run-time

Contrary to the GBES method, which has computational and
memory requirements exponential in the number of sensors,
the complexity of the GSR algorithms is only linear. In order
to corroborate our theoretical analysis, we have evaluatedthe
computation time required by the four algorithms (GBES,
GDC, GSR, and RM) for the case of a homogeneous sensor
team (σ2

di
= 4 m2, and σ2

θi
= 0.5 rad2, i = 1, . . . ,M )

tracking a moving target. Specifically, we have examined the
scalability of our algorithms by varyingM from 2 to 100.
These results are summarized in Table I. In contrast, due to
its exponential computational complexity, we are only ableto
apply GBES to teams of up to 3 sensors.

Additionally, we plot the computational time with respect
to the number of sensors in Fig. 12, when employing GSR
as motion strategy. The plot clearly validates the claim that
the GSR algorithm has linear, in the number of sensors,
computational complexity. Finally, we should note that the
main reason for the slower performance of the GSR algorithm
(when compared to the GDC) is that we directly employ
the MATLAB built-in function to compute the eigenvalues
associated with the companion matrices, which improves the
numerical accuracy at the expense of additional preprocessing
steps. One of our future research direction is to improve

TABLE I
COMPUTATIONAL T IME (SEC)

M GBES GDC GSR RM

2 0.1539 0.0002489 0.0011 0.00007053
3 8.9945 0.0002947 0.0014 0.00007106
10 N/A 0.0008 0.0047 0.0001263
20 N/A 0.0018 0.0109 0.0004553
30 N/A 0.0024 0.0153 0.0004853
40 N/A 0.0027 0.0185 0.0003653
50 N/A 0.0033 0.0227 0.0004121
60 N/A 0.0040 0.0274 0.0005056
70 N/A 0.0045 0.0315 0.0005477
80 N/A 0.0052 0.0362 0.0006736
90 N/A 0.0059 0.0406 0.0007331
100 N/A 0.0066 0.0450 0.0008845
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Fig. 12. CPU time vs. number of sensors, when employing GSR asmotion
strategy.

the GSR performance (in terms of CPU running time) to be
compared to that of the GDC.

VII. E XPERIMENTAL RESULTS

We hereafter describe one of the experiments performed to
validate the performance of our proposed GSR algorithm. Our
experimental setup is shown in Fig. 13, where a team of three
Pioneer II robots are deployed in a rectangular region of size
approximately4 m × 3 m. In Fig. 13, the target is shown at
the bottom right, while the other two Pioneers are acting as
tracking sensors. An overhead camera is employed to provide
ground truth for evaluating the estimator’s performance. To do
so, rectangular boards with specific patterns (see Fig. 13) are
mounted on top of the Pioneers, and the pose (position and
orientation) of each Pioneer, with respect to a global frameof
reference, is computed from the captured images.

In the experiment, we adopt a zero-acceleration target
motion model, where the target moves with constant speed of
approximately0.1 m/sec. The process noisew(t) [see (66)] is
assumed to be a zero-mean white Gaussian noise vector with
covarianceE

[
w(t)wT(t′)

]
= 10−6I2δ(t − t′). In our imple-

mentation, the sampling time is set toδt = 0.5 sec. The initial
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Fig. 13. [Two-sensor case, experimental setup] Three Pioneer robots, each
with a pattern board attached on its top. The target is located at the bottom
right of the image, while the other two robots act as trackingsensors.

true state of the target, computed from the overhead camera,is
xT (0) = [0.23, 0.16, 0.05, 0.01]T, while the initial estimate for
the target’s state is set tôxT (0|0) = [0, 0, 0, 0]T. At the begin-
ning, the two sensors are deployed atpS1(0) = [0.20, 1.69]T

andpS2(0) = [2.34, 0.17]T, respectively. The maximum speed
for each sensor is set to 0.12 m/sec, and the minimum distance
between the target and sensors isρ = 1 m. We consider the
scenario where each sensor measures both relative distance
and bearing to the target (i.e.,κdi

= κθi = 1, i = 1, 2).
These relative measurements are generated synthetically by
adding noise to the relative distance and bearing calculated
from the Pioneers’ pose estimates using the overhead camera.
In this experiment, the standard deviations of the distance
and bearing measurement noise are set toσdi

= 0.05 m and
σθi = 0.05 rad, i = 1, 2, respectively.

The duration of the experiment is 30 sec (i.e., 60 time steps).
At every time step, we employ the GSR method to calculate
the next best sensing location of each sensor.

Fig. 14 depicts the time evolution of the trace of the target’s
position covariance, which shows that at steady state, the
standard deviation of the estimation error along each direction
is around 0.02 m. The real estimation error, computed as
the 2-norm between the target’s estimated and true position
(obtained from the overhead camera), is shown in Fig. 15.
As evident, the estimation error, when employing the GSR-
based motion strategy, is immediately reduced from 0.28 m
to 0.04 m, and is less than 0.05 m for most of the remaining
time steps.

Fig. 16 depicts the actual and estimated trajectories of the
target, along with the real trajectories of the two sensors,when
employing the GSR-based motion strategy. Again, as was the
case in the simulations, the EKF produces consistent estimates
for GSR, i.e., the real target’s position is within the 3σ ellipse
centered at the target’s estimated position. This validates that
our proposed GSR algorithm is robust and applicable to real
systems.
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Fig. 14. [Two-sensor case, experimental result] Trace of the target’s position
posterior covariance matrix, when employing GSR as motion strategy.
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VIII. C ONCLUSIONS

In this paper, we have addressed the problem ofconstrained
optimal motion strategies forheterogeneous teams of mobile
sensors tracking a moving target using amixture of relative
observations (i.e., distance-only, bearing-only, or distance-and-
bearing). In particular, our objective is to determine the best
locations that the sensors should move to at every time step in
order to collect the most informative measurements, i.e., the
observations that minimize the trace of the target’s position
covariance matrix. In our formulation, we have explicitly
considered motion constraints on the robots (maximum speed
and minimum distance to the target), and we have shown that
this non-convex constrained optimization problem is NP-Hard
in general.

In order to derive a computationally efficient solution, we
first investigated the optimal trajectory generation problem
for single-sensor target tracking. Despite the fact that the
constrained optimization problem is non-convex even for the
single-sensor case, we derived its global optimal solution
analytically by (i) transforming the associated KKT optimality
conditions into a system of bivariate polynomial equations,
and (ii) directly solving it using algebraic geometry methods.
Furthermore, and in order to provide a real-time solution
for the multi-sensor case, we leveraged the single-sensor
result by relaxing the original NP-Hard problem. Specifically,
we introduced an iterative algorithm, Gauss-Seidel relaxation
(GSR), whose computational complexity is significantly lower
compared to that of a grid-based exhaustive search (GBES)
method (linear vs. exponential in the number of robots).
Simulation studies show that the GSR algorithm achieves
the same level of tracking accuracy as GBES, while it out-
performs gradient-descent-based approaches. Furthermore, we
performed experiments using a team of two mobile robots that
demonstrate the applicability of the GSR algorithm to real
systems.

In our future work, we plan to extend our current approach
and address the cases when the robots’ poses are uncertain
and when multiple targets are present. Finally, we intend to
investigate distributed implementations of the GSR algorithm
that account for limitations on the sensors’ communication
bandwidth (by transmitting only quantized functions of their
measurements [31], [6]) and range (by explicitly considering
the time-varying communication topology when designing the
estimator [32], [33]).

APPENDIX A
PROOF OFLEMMA 1

Proof: The covariance matrices appearing in (20) are
defined based on the following partition:

Pℓ|j =

[
Pℓ|j,11 Pℓ|j,12

PT
ℓ|j,12 Pℓ|j,22

]
(67)

where the2× 2 matrix Pℓ|j,11 denotes the covariance for the
target’sposition estimate,̂pT = [x̂T ŷT ]

T, at time-stepℓ given
measurements up to time-stepj.

Employing the matrix inversion lemma [34], the covariance

update equation (19) can be written as:

P−1
k+1|k+1 = P−1

k+1|k +HT
k+1R

−1Hk+1 (68)

Note that if the state vector only contains the position of
the target, then (20) is identical to (68).

In the general case, when the state vector also contains
higher-order derivatives of the position (e.g., velocity,accel-
eration, etc.), substituting

P−1
k+1|k = Υ =

[
Υ11 Υ12

ΥT
12 Υ22

]
(69)

and

H
T
k+1R

−1
Hk+1 =

[

HT
e,k+1R

−1He,k+1 02×(2N−2)

0(2N−2)×2 0(2N−2)×(2N−2)

]

on the right hand-side of (68) yields:

Pk+1|k+1 =

[
Υ11 +HT

e,k+1R
−1He,k+1 Υ12

ΥT
12 Υ22

]−1

(70)

Employing the property of the Schur complement [34] for
the inversion of a partitioned matrix in (69)-(70), we obtain:

Pk+1|k+1,11 =
(

Υ11 +H
T
e,k+1R

−1
He,k+1 −Υ12Υ

−1
22 Υ

T
12

)−1

=
(

(

Pk+1|k,11

)−1
+H

T
e,k+1R

−1
He,k+1

)−1

APPENDIX B
RATIONAL FUNCTIONS f0(s

∗) AND ∇f0(s
∗)

We hereafter show thatf0(s∗) [see (32)] is a rational
function in s∗ = [x y]T, i.e.,

f0(s
∗) =

h(s∗)

g(s∗)
(71)

whereh(s∗) andg(s∗) are polynomials inx andy, and thus

∇f0(s
∗) =

g(s∗)∇h(s∗)− h(s∗)∇g(s∗)

g2(s∗)
(72)

is also a rational function inx andy.
To proceed, note thatf0(s∗) = tr(M−1) where

M = Λ+
κd
σ2
d

(s∗) (s∗)
T

(s∗)T (s∗)
+
κθ
σ2
θ

J (s∗) (s∗)
T
JT

(
(s∗)T (s∗)

)2 (73)

Moreover, tr(M−1) = tr(M)·ε
det(M)·ε holds true for any nonzero

scalarε and any invertible2× 2 matrix M. By definingε =
λ1λ2(x

2 + y2)2 > 0, we obtain [see (71) and (73)]:

tr (M) = λ
−1
1 + λ

−1
2 + κdσ

−2
d + κθσ

−2
θ (x2 + y

2)−1

det(M) = λ
−1
1 λ

−1
2 + κdσ

−2
d κθσ

−2
θ (x2 + y

2)−1

+ λ
−1
1

[

κdσ
−2
d (x2 + y

2)−1
y
2 + κθσ

−2
θ (x2 + y

2)−2
x
2]

+ λ
−1
2

[

κdσ
−2
d (x2 + y

2)−1
x
2 + κθσ

−2
θ (x2 + y

2)−2
y
2]

h(s∗) = tr (M) · ε

= a2(x
2 + y

2)2 + a1(x
2 + y

2)

g(s∗) = det(M) · ε

= b6(x
2 + y

2)2 + b5(x
2 + y

2)x2 + b4(x
2 + y

2)y2

+ b3(x
2 + y

2) + b2x
2 + b1y

2
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where the coefficientsai (i = 1, 2) and bj (j = 1, . . . , 6) are
expressed in terms ofλ1, λ2, κdσ

−2
d , andκθσ

−2
θ :

a2 = λ1 + λ2 + λ1λ2κdσ
−2
d , a1 = λ1λ2κθσ

−2
θ

b6 = 1, b5 = λ1κdσ
−2
d , b4 = λ2κdσ

−2
d (74)

b3 = λ1λ2κdσ
−2
d κθσ

−2
θ , b2 = λ2κθσ

−2
θ , b1 = λ1κθσ

−2
θ

and thusf0(s∗) =
h(s∗)
g(s∗) is a rational function ins∗.

Since bothh(s∗) andg(s∗) are bivariate polynomials, their
derivatives∇h(s∗) and∇g(s∗) are 2 × 1 vectors with each
component a bivariate polynomial. Specifically,

∇h(s∗) = 2h0(s
∗)

[
x
y

]
(75)

∇g(s∗) = 2g0(s
∗)

[
x
y

]
+ 2

[
xgx(s

∗)
ygy(s

∗)

]
(76)

whereh0(s∗), g0(s∗), gx(s∗), and gy(s∗) are polynomials in
x andy, defined as:

h0(s
∗) = 2a2(x

2 + y2) + a1 (77)

g0(s
∗) = 2b6(x

2 + y2) + b5x
2 + b4y

2 + b3

gx(s
∗) = b5(x

2 + y2) + b2 (78)

gy(s
∗) = b4(x

2 + y2) + b1 (79)

APPENDIX C
TRANSFORMING (41) INTO (42)

By substituting the expressions of∇f0(s∗), ∇h(s∗), and
∇g(s∗) [see (72)-(76)] into (41), and setting the numerator
equal zero, we obtain the following polynomial equation with
respect tox andy:

0 = x(y − c2)
[

g(s∗)h0(s
∗)− h(s∗)g0(s

∗)− h(s∗)gx(s
∗)
]

− y(x− c1)
[

g(s∗)h0(s
∗)− h(s∗)g0(s

∗)− h(s∗)gy(s
∗)
]

(80)

Rearranging terms in (80), yields:

0 = xyh(s∗)
[

gy(s
∗)− gx(s

∗)
]

+ h(s∗)
[

c2xgx(s
∗)− c1ygy(s

∗)
]

+ (c1y − c2x)
[

g(s∗)h0(s
∗)− h(s∗)g0(s

∗)
]

(81)

Substituting the expressions ofh(s∗), g(s∗), h0(s∗), g0(s∗),
gx(s

∗), gy(s∗), and rearranging terms in (81), we obtain the
polynomial equation (42):

0 = f1(x, y) = β3xy∆
3 + (α8x+ α7y + β2)xy∆

2

+ (α6x
3 + α5x

2
y + α4xy

2 + α3y
3 + β1xy)∆ + (α2x+ α1y)xy

where∆ := x2 + y2, and

β3 = a2(b4 − b5)

β2 = a1(b4 − b5) + a2(b1 − b2)

β1 = a1(b1 − b2)

α8 = c1a2(b5 − b4)

α7 = c2a2(b5 − b4)

α6 = c2 [a1(b5 + b6)− a2(b2 + b3)] (82)

α5 = c1 [a2(b3 + 2b2 − b1)− a1(b6 + b4)]

α4 = c2 [a2(b2 − 2b1 − b3) + a1(b6 + b5)]

α3 = c1 [a2(b3 + b1)− a1(b6 + b4)]

α2 = c1a1(b2 − b1)

α1 = c2a1(b2 − b1)

Sincea1, a2, b1, . . . , b6 [see (74)] are coefficients expressed
in terms of λ1, λ2, κdσ

−2
d , and κθσ

−2
θ , thus from (82) we

conclude thatβi, i = 1, 2, 3, andαj , j = 1, . . . , 8, are also
functions ofλ1, λ2, c1, c2, κdσ

−2
d , andκθσ

−2
θ .

APPENDIX D
COEFFICIENTS OF(42) FOR THE CASEκd = κθ = 1, λ1 > λ2

By substitutingκd = κθ = 1 into the expressions ofai, i =
1, 2, andbj, j = 1, . . . , 6, [see (74)], we have:

a2 = λ1 + λ2 + λ1λ2σ
−2
d , a1 = λ1λ2σ

−2
θ

b6 = 1, b5 = λ1σ
−2
d , b4 = λ2σ

−2
d

b3 = λ1λ2σ
−2
d σ−2

θ , b2 = λ2σ
−2
θ , b1 = λ1σ

−2
θ

Thus, from (82), we conclude that in generalβi 6= 0, i =
1, 2, 3, andαj 6= 0, j = 1, . . . , 8. Additionally, β3 = a2(b4 −
g5) = (λ2−λ1)σ

−2
d a2 < 0, sincea2 > 0 andλ1 > λ2. Hence,

f1 [see (42)] is an 8th-order bivariate polynomial.
Moreover, by comparing the coefficients of (42) and (43), it

is evident thatχi, i = 0, . . . , 7, are polynomials with respect
to x, whose coefficients are functions ofλ1, λ2, c1, c2, σ

−2
d ,

andσ−2
θ [see (74) and (82)], i.e.,

χ7 = β3x

χ6 = α7x

χ5 = 3β3x
3 + α8x

2 + β2x+ α3

χ4 = 2α7x
3 + α4x

χ3 = 3β3x
5 + 2α8x

4 + 2β2x
3 + (α5 + α3)x

2 + β1x

χ2 = α7x
5 + (α6 + α4)x

3 + α1x

χ1 = β3x
7 + α8x

6 + β2x
5 + α5x

4 + β1x
3 + α2x

2

χ0 = α6x
5

APPENDIX E
COEFFICIENTS OF(42) FOR THE CASE

κd = 0, κθ = 1, λ1 > λ2

Substitutingκd = 0, κθ = 1 into the expressions ofai, i =
1, 2, andbj, j = 1, . . . , 6, [see (74)], we obtain:

a2 = λ1 + λ2, a1 = λ1λ2σ
−2
θ

b6 = 1, b5 = b4 = b3 = 0, b2 = λ2σ
−2
θ , b1 = λ1σ

−2
θ

From (82), it is easy to verify thatβ3 = α8 = α7 = 0,
andβ2 = a2(b1 − b2) = (λ1 − λ2)(λ1 + λ2)σ

−2
θ > 0. Thus,

f1 [see (42)] can be simplified into the following 6th-order
bivariate polynomial [see (47)]:

0 = f1(x, y) = β2xy∆
2

+ (α6x
3 + α5x

2
y + α4xy

2 + α3y
3 + β1xy)∆ + (α2x+ α1y)xy

By setting the coefficients of (47) and (48) equal, we have:

ζ5 = β2x+ α3

ζ4 = α4x

ζ3 = 2β2x
3 + (α5 + α3)x

2 + β1x

ζ2 = (α6 + α4)x
3 + α1x

ζ1 = β2x
5 + α5x

4 + β1x
3 + α2x

2

ζ0 = α6x
5
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APPENDIX F
COEFFICIENTS OF(42) FOR THE CASE

κd = 1, κθ = 0, λ1 > λ2

Based on the expressions ofβ3, α8 and α7 in (82), it is
straightforward to verify thatα8 = −c1β3 andα7 = −c2β3.
By substitutingκd = 1, κθ = 0 in (74), we have:

a2 = λ1 + λ2 + λ1λ2σ
−2
d , a1 = 0

b6 = 1, b5 = λ1σ
−2
d , b4 = λ2σ

−2
d , b3 = b2 = b1 = 0

Substituting the aboveai, i = 1, 2, and bj, j = 1, . . . , 6,
into (82), and recalling thatλ1 > λ2, yields:

β3 = a2(b4 − b5) = (λ2 − λ1)σ
−2
d a2 < 0,

α8 = −c1β3, α7 = c2β3

β2 = β1 = α6 = α5 = α4 = α3 = α2 = α1 = 0

and we obtain (50):

0 = f1(x, y) = β3∆
2xy(x2 + y2 − c1x− c2y)

APPENDIX G
CARTESIAN COORDINATES FORTANGENT POINTS A & B

We hereafter determine the elements of the setΞ̄1l =
{(x, y)|ξ1(x, y) = f2(x, y) = 0}.

Clearly, f2 = 0 [see (40)] describes a circle in the plane,
denoted asO1, with radiusr and centerC, whose Cartesian
coordinates are[xC yC ]

T = c = [c1 c2]
T [see Fig. 3(a)]. On

the other hand, by rewriting (51) as:

0 = ξ1(x, y) =
(
x−

c1
2

)2
+
(
y −

c2
2

)2
−

‖c‖2

4

it is straightforward to see thatξ1 = 0 also corresponds to a
circleO2 in the plane with radius12‖c‖, whose centerC′ [see
Fig. 3(a)] is the midpoint between the originO andC, i.e.,
[xC′ yC′ ]T = 1

2c = 1
2 [c1 c2]

T. By assumptionc 6= 02×1,12

henceO2 andO1 are not concentric, which in turn implies
Ξ̄1l, corresponding to the intersection ofO1 andO2, has at
most two elements.

Note that bothO andC satisfy (51) and thus belong toO2,
and sinceO, C′, andC are on the same line, we conclude
that the line segment13 OC is the diameter of the circleO2.
Moreover, sinceOA andOB are two tangent lines to the circle
O1, intersectingO1 at A andB respectively, both triangles
OAC and OBC are right triangles and share the common
hypotenuseOC [see Fig. 3(a)]. Now let us focus on the
right trianglesOAC. Recalling thatC′ is the midpoint of the
hypotenuseOC, based on the median theorem, we conclude
that ‖C′A‖ is exactly half of‖OC‖, i.e., ‖C′A‖ = 1

2‖c‖.
In other words,A is located on the circle whose center is
C′ and radius is1

2‖c‖, which is preciselyO2. Therefore,
A ∈ Ξ̄1l. The same argument also applies toB. Since it
has been established thatΞ̄1l has at most two elements, we

12Note that whenc = 02×1, the sensor’s current location coincides with
the one-step-ahead target’s estimated position, i.e.,pS(k) = p̂T (k + 1|k),
yielding r = 0. Thus, the sensor will not move and will collide with the
target at the next time step, i.e.,pS(k + 1) = p̂T (k + 1|k).

13AB represents the line segment with two end pointsA and B, while
‖AB‖ denotes the Euclidean norm ofAB.

conclude that̄Ξ1l contains exactly two real elements, which
are the two tangent pointsA andB.

To acquire the Cartesian coordinates ofA and B [see
Fig. 3(a)], we first apply the Pythagorean theorem to the right
trianglesOAC andOBC to obtain‖OA‖ = ‖OB‖ = τ =√
‖c‖2 − r2. Note that the angleŝAOC = ĈOB = ω =

arcsin
(

r
‖c‖

)
, X̂OC = ϕC = arctan

(
c2
c1

)
, and

X̂OA = X̂OC − ÂOC =⇒ ϕA = ϕC − ω

X̂OB = X̂OC + ĈOB =⇒ ϕB = ϕC + ω

Therefore

sA =

[
xA
yA

]
= ‖OA‖

[
cosϕA

sinϕA

]
= τ

[
cos(ϕC − ω)
sin(ϕC − ω)

]

sB =

[
xB
yB

]
= ‖OB‖

[
cosϕB

sinϕB

]
= τ

[
cos(ϕC + ω)
sin(ϕC + ω)

]

which is precisely (53).

APPENDIX H
COEFFICIENTS OF(42) FOR THE CASEλ1 = λ2

Substitutingλ1 = λ2 = λ into the expressions ofai, i =
1, 2, andbj, j = 1, . . . , 6, [see (74)], yields:

a2 = 2λ+ λ2κdσ
−2
d , a1 = λ2κθσ

−2
θ

b6 = 1, b5 = b4 = λκdσ
−2
d

b3 = λ2κdσ
−2
d κθσ

−2
θ , b2 = b1 = λκθσ

−2
θ

From (82), it is easy to verify that

β3 = β2 = β1 = α8 = α7 = α2 = α1 = 0

α6 = α4 = c2ǫ , α5 = α3 = −c1ǫ

where

ǫ = a1(b5 + b6)− a2(b2 + b3) = −λ2κθσ
−2
θ (1 + λκdσ

−2
d )2

Thusf1(x, y) [see (42)] can be transformed into:

0 = f1(x, y) = ǫ(c2x
3 − c1x

2y + c2xy
2 − c1y

3)∆

= ǫ∆2(c2x− c1y)

For the single-sensor target tracking witheither bearing-
only or distance-and-bearing observations,κθ = 1, thusǫ < 0.
Additionally, ∆ = x2 + y2 > 0, hence,

f1(x, y) = 0 ⇐⇒ ξ3(x, y) = c2x− c1y = 0

It is straightforward to verify thatξ3 depicts a straight line
passing through the originO and the centerC. Therefore, the
critical points satisfyingf1 = f2 = 0, or equivalentlyξ3 =
f2 = 0, must be the intersections between the line defined
by ξ3 = 0 and the circle described byf2 = 0 [see (40)].
Hence, by referring to Fig. 3(a), the two critical points are
readily attained asD andD′, with sD = c

‖c‖

(
‖c‖ − r

)
and

sD′ = c
‖c‖

(
‖c‖+ r

)
.

On the other hand, for the distance-only measurement
model, κθ = 0, thus ǫ = 0, which yields f1(x, y) = 0
regardless ofx and y. Furthermore, by substituting in (32)
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κd = 1, κθ = 0, λ1 = λ2 = λ, it can be shown:

f0(s) = tr

(
λ−1I2 +

1

σ2
d

ssT

sTs

)−1

= λ+
λσ2

d

λ+ σ2
d

= const.

In other words,f0(s) is independent ofs, and∇f0(s) =
02×1, ∀s. Therefore, the sensor’s location will not affect
the trace of the target position posterior covariance for the
distance-only measurement model, ifλ1 = λ2 = λ.

APPENDIX I
TRANSFORMING (57) INTO (58)

By comparing equations (41) and (57), it is obvious that (57)
is a special case of (41), obtained by choosingc = [c1 c2]

T =
[0 0]T in (41). Thus, from (82), we concludeαj = 0, j =
1, . . . , 8. Moreover, by substitutingαj = 0, j = 1, . . . , 8,
in (42), or equivalently, settingc1 = c2 = 0 in (81), we obtain:

0 = xyh(s∗)
[
gy(s

∗)− gx(s
∗)
]

(83)

where the polynomialsh(s∗), gx(s∗), andgy(s∗) are defined
in (77)-(79).

To acquire gy(s∗) − gx(s
∗), we substituteb1, b2, b4, b5

[see (74)] into (78)-(79) and attain:

gy(s
∗)− gx(s

∗) = (λ2 − λ1)
[

κdσ
−2
d (x2 + y

2)− κθσ
−2
θ

]

= (λ2 − λ1)(κdσ
−2
d ρ

2
− κθσ

−2
θ ) (84)

where we have employed the equalityx2+y2 = ρ2 [see (56)].
Note that h(s∗) > 0, and if we assumeλ1 > λ2, and
κdσ

−2
d ρ2 6= κθσ

−2
θ (which is automatically satisfied for

distance-only and bearing-only measurement models, and also
holds true ifρ 6= σd

σθ
for the distance-and-bearing observation

model), then from (84),gy(s∗)− gx(s
∗) 6= 0. Hence, (83) can

be further simplified into (58), i.e.,f4(x, y) = xy = 0.

APPENDIX J
SPECIAL CASES OF(83)

Note that (83) remains 0 regardless ofx andy, if and only
if gx(s∗) = gy(s

∗), which [see (84)] is equivalent toeither
λ1 = λ2, or ρ = σd

σθ
for κd = κθ = 1.

Let us first examineλ1 = λ2 = λ. To proceed, we first
parameterize the circle [see (56)] through its polar coordinates,
i.e., s = [x y]T = ρ[cosϕ sinϕ]T, and evaluate (32) by sub-
stituting s = ρ[cosϕ sinϕ]T. After algebraic manipulation,
we attain, for anys such thatsTs = ρ2,

f0(s) = tr

(
λ−1I2 +

κd
σ2
d

ssT

sTs
+
κθ
σ2
θ

JssTJT

(sTs)2

)−1

=
λσ2

d

κdλ+ σ2
d

+
λσ2

θρ
2

κθλ+ σ2
θρ

2
= const.

In other words,f0(s) remains constant along the curve
EGF [see Fig. 3(b)] ifλ1 = λ2. Moreover, the value of this
constant depends onκd andκθ.

Next, we focus on the other condition:κd = κθ = 1, and
ρ = σd

σθ
. To proceed, we first realize that the following identity:

ssT + JssTJT =
(
sTs
)2

I2, holds true for any 2D vectors.

By substitutingκd = κθ = 1, sTs = ρ2 =
σ2
d

σ2
θ

into (32), and
employing the above identity, we obtain:

Λ+
1

σ2
d

ssT

sTs
+

1

σ2
θ

JssTJT

(sTs)2
= Λ+

1

σ2
d

ssT

sTs
+

1

σ2
d

JssTJT

sTs

= Λ+ σ
−2
d I2

and

f0(s) = tr
(

Λ+ σ
−2
d I2

)−1
=

λ1σ
2
d

λ1 + σ2
d

+
λ2σ

2
d

λ2 + σ2
d

= const.

Hence,f0(s) remains constant along the curveEGF [see
Fig. 3(b)], if κd = κθ = 1, andρ = σd

σθ
.

APPENDIX K
FEASIBILITY OF THE CRITICAL POINTS

In what follows, we show that́s = [−sign(c1)ρ 0]T ands̀ =
[0 − sign(c2)ρ]T violate the maximum-speed constraint (33).
To proceed, we evaluate‖s− c‖ at ś and s̀:

‖ś− c‖2 =
(
− sign(c1)ρ− c1

)2
+ c22 =

(
ρ+ |c1|

)2
+ c22

> c21 + c22 = ‖c‖2 ≥ r2

‖s̀− c‖2 = c21 +
(
− sign(c2)ρ− c2

)2
= c21 +

(
ρ+ |c2|

)2

> c21 + c22 = ‖c‖2 ≥ r2

Therefore‖ś− c‖ > r and‖s̀− c‖ > r, or equivalently,́s
and s̀ do not satisfy the maximum-speed constraint (33).

Next, let us consider−ś = [sign(c1)ρ 0]T. Clearly −ś

automatically satisfies‖ − ś‖ = ρ, hence,

−ś ∈ Ω̄ ⇐⇒ r2 ≥ ‖ − ś− c‖2 =
(
ρ− |c1|

)2
+ c22

and by subtractingc22 on both sides, we obtain (59).
Applying the same argument to−s̀ = [0 sign(c2)ρ]T,

−s̀ ∈ Ω̄ ⇐⇒ r2 ≥ ‖ − s̀− c‖2 = c21 +
(
ρ− |c2|

)2

yields (60).

APPENDIX L
CARTESIAN COORDINATES FORINTERSECTIONSE & F

The Cartesian coordinates ofE and F can be derived in
a similar way asA and B in Appendix G. Referring to
Fig. 3(b), since the two boundary pointsE and F are also
the intersection points of the two circles:‖s− c‖ = r and
‖s‖ = ρ, we have‖OE‖ = ‖OF‖ = ρ and ‖CE‖ =
‖CF‖ = r. Furthermore,‖OC‖ = ‖c‖. Applying the
law of cosines to the trianglesOEC andOFC, we obtain
ÊOC = ĈOF = ̟ = arccos

(
ρ2+‖c‖2−r2

2ρ‖c‖

)
. Moreover,

X̂OC = ϕC = arctan
(

c2
c1

)
, and

X̂OE = X̂OC − ÊOC =⇒ ϕE = ϕC −̟

X̂OF = X̂OC + ĈOF =⇒ ϕF = ϕC +̟

Thus,

sE =

[
xE
yE

]
= ‖OE‖

[
cosϕE

sinϕE

]
= ρ

[
cos(ϕC −̟)
sin(ϕC −̟)

]

sF =

[
xF
yF

]
= ‖OF‖

[
cosϕF

sinϕF

]
= ρ

[
cos(ϕC +̟)
sin(ϕC +̟)

]

which is precisely (61).
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Algorithm 1 Gauss-Seidel Relaxation Algorithm

Require: s
(0)
i = ci, i = 1, . . . ,M

Ensure: si = s
(ℓ+1)
i , i = 1, . . . ,M {Minimize (29)}

repeat
for i = 1 to M do

Calculate
(
P

(ℓ+1)
i

)−1

from (65)

Determines(ℓ+1)
i from (64) {See Algorithm 2}

s
(ℓ)
i ⇐ s

(ℓ+1)
i {Updatesi}

end for
until max. number of iterations is reached or change in the
objective function is less than 1%

Algorithm 2 Single-sensor Optimization
Require: λ1, λ2, c, r, ρ, σd, σθ, κd, κθ
Ensure: s {Minimize (32), while satisfying (33)-(34)}

if ρ ≤ ‖c‖ − r then
if λ1 6= λ2 then

if κd = κθ = 1 then
Computes from (46) and (40){See Section IV-A1}

else if κd = 0, κθ = 1 then
Computes from (49) and (40){See Section IV-A2}

else
Compute s from (51)-(52), and (40){See Sec-
tion IV-A3}

end if
else

Computes = c
‖c‖ (‖c‖ − r) {See Section IV-A4}

end if
else if

√
‖c‖2 − r2 ≤ ρ < ‖c‖+ r then

Computes from (59)-(61){See Section IV-B}
else if ‖c‖ − r < ρ <

√
‖c‖2 − r2 then

Determine s following the strategy outlined in Sec-
tion IV-C

else
Computes = c

‖c‖ (r + ‖c‖) {See Section IV-D}
end if


