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Abstract

In this report, we study the positioning accuracy of Cooperative Localization and Target Tracking (CLATT)
in a network of mobile robots, and derive analytical upper bounds for the positioning uncertainty. The obtained
bounds provide a description for the asymptotic positioning performance of the robots and the targets as a function
of the sensor characteristics, and the structure of the graph of relative position measurements. By employing an
Extended Kalman Filter (EKF) formulation for data fusion, two expressions are derived for the asymptotic positioning
performance. One expression provides the guaranteed worst-case positioning accuracy, whereas the other determines
an upper bound on the expected position estimates’ covariance. We investigate the effects of jointly estimating the
targets’ and the robots’ position, and demonstrate that it results in better accuracy for the robots’ position estimates.

1 Introduction
The idea of employing sensor networks for target tracking has recently become attractive, as the result of advances in
the manufacturing of low-cost communication and sensing devices. When multiple nodes of a sensor network measure
the distance and bearing to a target of interest, the acquired data can be processed (either at a central fusion center or in
a distributed fashion) in order to estimate the target’s position. When instead of static, mobile sensors are employed, a
larger area can be covered without the need to increase the number of nodes in the sensing network [1]. Moreover, the
configuration of the sensors can be changed so as to adapt to the motion of the target. For example, a team of robots
can actively pursue a target to prevent the target’s escape from the visibility range of sensors [2].

When a team of robots is employed to track a number of targets, the position of the robots (Localization) and the
position of the targets (Tracking) need to be concurrently estimated. In this report, we study the problem of Cooperative
Localization and Target Tracking (CLATT) in scenarios where teams of, possibly heterogeneous, mobile robots track
the position of multiple targets. One of the main results of this report is a proof that jointly estimating the position
of the robots and targets results in better accuracy for the robots’ position estimates, compared to when the robots
localize ignoring the targets. Intuitively, this can be justified by considering that the robots are implicitly performing
observations of their relative positions by measuring the range and bearing to the same targets.

Another significant contribution of this report is to examine the robots’ performance on average and in the worst
case. This is a common question that is always addressed before any investment in system development is made. In
this work, the term performance refers to the accuracy of position estimation and is assessed by the covariance of the
position estimates for the robots and targets. Analytical upper bounds for the uncertainty of the robots’ and the targets’
localization are presented that are functions of the sensors’ characteristics and of the structure of the sensing graph
that connects the robots and targets. Furthermore, it is shown how a priori information about the distribution of the
positions of the robots and the targets can be utilized to derive an upper bound for the expected value of the position
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estimates’ covariance. The developed upper bounds can be employed in order to predict the position accuracy attained
in a certain tracking application, and thus can facilitate the task of sensor selection, so as to meet the requirements of
the application.

In this report, we consider the case where: (i) all robots are equipped with proprioceptive sensors that measure
velocity, and are provided with orientation estimates of bounded uncertainty, (ii) one of the robots is equipped with
a GPS receiver, enabling it to obtain absolute position estimates, and (iii) the robots are capable of measuring the
relative positions of other robots and targets. These robot-to-robot and robot-to-target measurements are presented by
the Relative Position Measurement Graph (PRMG). This is a connected and directed graph, whose vertices represent
the robots and targets and edges represent the relative position measurements between them.

2 Related Work
The problem of target tracking using multi-sensor networks has been the subject of extensive research in recent
years [3, 4, 5]. Most researchers address the problem of tracking with a network of static sensors, nevertheless,
several approaches have been proposed for target tracking with mobile robots. For example, Parker [6] has developed
a control strategy for multi-robot teams to minimize the total time in which the target can evade being observed by
the robots. Several region-based approaches to target tracking by mobile robots have been developed by Jung and
Sukhatme [1, 7]. A hierarchical algorithm for localization and tracking using directional sensors is presented in [8].
Stroupe et al. [9] propose a distributed action-selection algorithm that can be employed in order to optimize the robots’
trajectories, with respect to the targets’ position covariance. Despite their importance for practical applications, none
of the aforementioned approaches address the problem of determining bounds on the performance (accuracy) of the
robots’ and targets’ localization.

A number of approaches aimed at providing a description of the localization accuracy during target tracking have
been developed for the case in which the sensors remain static. In [10], an optimal approach for fusing target tracking
data is developed, and its performance is evaluated using Monte Carlo simulations. An analytical performance eval-
uation of this method is also provided in [11]. Zhang et al. [12] have studied the Cramer-Rao Lower Bound (CRLB)
of the covariance of a target’s position estimates. The CRLB for tracking manoeuvering targets is presented in [13].
In [14], the performance of a wireless sensor network in the presence of communication delays and false alarms is
analyzed and compared to the CRLB. All aforementioned approaches focus on static sensor networks exclusively, and
the results cannot be readily extended to networks of mobile sensors. Additionally, although the CRLB is especially
useful for the evaluation of suboptimal target tracking algorithms, it cannot be employed to determine the worst-case
performance of tracking, which is of interest before the deployment of a system in any application.

The main contribution of the work presented in this report is the characterization of the steady-state accuracy of the
position estimates in Cooperative Localization and Target Tracking (CLATT). This is achieved by deriving analytical
upper bounds of the steady-state covariance matrix of the position estimate, for the worst-case scenario as well as
for the average case, i.e., the case where a probabilistic description of the targets’ and robots’ positions is known in
advance. Moreover, when the process noise in the target motion model is infinite (i.e., no prior information of the
target’s motion model is available), a study of the localization accuracy provides a worst-case performance bound over
all possible motion models that employ prior information. This analysis also demonstrates that the robot’s position
estimates are always better when, in addition to robot-to-robot measurements, the robots also process robot-to-target
measurements.

3 Problem Formulation

3.1 Position propagation
The discrete-time kinematic equations for the i-th robot are

xri (k + 1) = xri (k) + Vi(k)δt cos(φi(k)) (1)
yri (k + 1) = yri (k) + Vi(k)δt sin(φi(k)) (2)

where Vi(k) denotes the robot’s translational velocity at time k and δt is the sampling period. These equations imply
that the robots are moving in a 2D plane. In the Kalman filter framework, the estimates of the robot’s position are
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propagated using the measurements of the robot’s velocity, Vmi
(k), and the estimates of the robot’s orientation, φ̂i(k):

x̂rik+1|k
= x̂rik|k

+ Vmi (k)δt cos(φ̂i(k))

ŷrik+1|k
= ŷrik|k

+ Vmi
(k)δt sin(φ̂i(k))

Clearly, these equations are time varying and nonlinear due to the dependence on the robot’s orientation. By linearizing
Eqs. (1) and (2), the error propagation equation for the robot’s position is readily derived:

[
x̃rik+1|k
ỹrik+1|k

]
=

[
1 0
0 1

] [
x̃rik|k
ỹrik|k

]
+

[
δt cos(φ̂i(k)) −Vmi

(k)δt sin(φ̂i(k))
δt sin(φ̂i(k)) Vmi

(k)δt cos(φ̂i(k))

] [
wVi (k)

φ̃i(k)

]

⇔ X̃rik+1|k
= I2×2 X̃rik|k

+ Gri
(k) Wi(k) (3)

where1 wVi
(k) is a zero-mean white Gaussian noise sequence of variance σ2

Vi
, affecting the velocity measurements and

φ̃i(k) is the error in the robot’s orientation estimate at time k. This is modeled as a zero-mean white Gaussian noise
sequence of variance σ2

φi
.

From Eq. (3), we deduce that the covariance matrix of the system noise affecting the i-th robot is:

Qri (k) = E{Gri (k)Wi(k)WT
i (k)GT

ri
(k)}

= Gri
(k)E{Wi(k)WT

i (k)}GT
ri

(k)

=
[

δt cos(φ̂i(k)) −Vmi (k)δt sin(φ̂i(k))
δt sin(φ̂i(k)) Vmi (k)δt cos(φ̂i(k))

] [
σ2

Vi
0

0 σ2
φi

] [
δt cos(φ̂i(k)) −Vmi (k)δt sin(φ̂i(k))
δt sin(φ̂i(k)) Vmi (k)δt cos(φ̂i(k))

]T

=
[

cos(φ̂i(k)) − sin(φ̂i(k))
sin(φ̂i(k)) cos(φ̂i(k))

] [
δt2σ2

Vi
0

0 δt2V 2
mi

(k)σ2
φi

] [
cos(φ̂i(k)) − sin(φ̂i(k))
sin(φ̂i(k)) cos(φ̂i(k))

]T

= C(φ̂i(k))
[

δt2σ2
Vi

0
0 δt2V 2

m(k)σ2
φi

]
CT (φ̂i(k)) (4)

where C(φ̂i) denotes the 2× 2 rotation matrix associated with φ̂i.
A zero velocity model is used to model the targets’ 2D motion [15], hence, the state propagation equations for the

i-th target are
XTik+1|k

= XTik|k
+ δtWTi (k)

where WTi = [wTxi
wTyi

]T is the noise process, introduced in the target’s motion model to express the uncertainty
in the actual motion of the target.

The error propagation equation is given by:
[

x̃Tik+1|k
ỹTik+1|k

]
=

[
1 0
0 1

] [
x̃Tik|k
ỹTik|k

]
+ δt

[
wTix

(k)

wTiy
(k)

]

⇔ X̃Tk+1|k = I2×2 X̃Tk|k + δt WT (k) (5)

and the covariance of the system noise of the target is

QT = E
{
δt2WT (k)WT

T (k)
}

= δt2

[
σ2

Tix
0

0 σ2
Tiy

]
= δt2σ2

T I2×2 = QT (6)

where σ2
T is the variance of the targets’ system noise, assumed to be homogenous along all three axes, and identical

for all targets. The state vector for the entire system is defined as the stacked vector comprising of the positions of the
robots and the targets, i.e.,

X =
[

XT
r1

· · · XT
rM

XT
T1

· · · XT
TN

]T

1Throughout this report, 0m×n denotes the m × n matrix of zeros, 1m×n denotes the m × n matrix of ones, and In×n denotes the n × n
identity matrix.

TR-2005-004. r153 4



Hence, the state transition matrix for the entire system at time-step k is Φk = I2M+2N , and the covariance matrix of
the system noise is:

Q(k) =
[

Qr(k) 02M×2N

02N×2M QT

]
(7)

where Qr(k) = Diag(Qri
(k)), and QT = IN ⊗ (QT ) are block diagonal matrices describing the system noise

covariance for the robots and targets, respectively.
The equation for propagating the covariance matrix of the state error is written as:

Pk+1|k = Pk|k + Q(k) (8)

where Pk+1|k = E{X̃k+1|kX̃T
k+1|k} and Pk|k = E{X̃k|kX̃T

k|k} are the covariance of the error in the estimate of
X(k + 1) and X(k) respectively, after measurements up to time k have been processed.

3.2 Measurement Model
At every time step, the robots perform robot-to-robot and robot-to-target relative position measurements. Also one
of the robots, say the first one is equipped with GPS. The relative position measurement between robots ri and rm is
given by:

zrirm = CT (φi) (Xrm −Xri) + nzrirm
(9)

where ri (rm) is the observing (observed) robot, and nzrirm
is the noise affecting this measurement. Similarly, the

measurement of the relative position between ri and the target is given by:

zriT = CT (φi) (XT −Xri) + nzriT
(10)

The similarity of the preceding two measurement equations allows us to treat both types of measurements in a uniform
manner. We denote by Sij the subject of the j-th measurement performed by robot i, i.e.,

Sij ∈ {r1, r2, . . . , rM , T1, T2, . . . , TN} \ {ri}

Thus, the general form of the relative position measurement equation is:

zij = CT (φi)
(
XSij −Xri

)
+ nzij (11)

Assuming that the i-th robot performs Mi relative position measurements, the index j assumes integer values in the
range [1,Mi] to describe these measurements. By linearizing the last expression, the measurement error equation is
obtained:

z̃ij(k + 1) = zij(k + 1)− ẑij(k + 1)

= CT (φ̂i(k + 1))
(
X̃Sij k+1|k − X̃ri k+1|k

)
− CT (φ̂i(k + 1))J

(
X̂Sij k+1|k − X̂ri k+1|k

)
φ̃i(k + 1) + nzij (k + 1)

= CT (φ̂i(k + 1))

[
02×2 . . . −I2×2︸ ︷︷ ︸

ri

. . . I2×2︸︷︷︸
Sij

. . . 02×2

]




...
X̃ri

...
X̃Sij

...




k+1|k

+
[

I2×2 −CT (φ̂i(k + 1))J∆̂pij k+1|k

] [
nzij (k + 1)

φ̃i(k + 1)

]

= Hij(k + 1)X̃k+1|k + Γij(k + 1)nij(k + 1) (12)
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where

J =
[

0 −1
1 0

]
, ∆̂pijk+1|k = X̂Sij k+1|k − X̂ri k+1|k

and we note that the measurement matrix for this relative position measurement can be written as

Hij(k + 1) = CT (φ̂i(k + 1))

[
02×2 . . . −I2×2︸ ︷︷ ︸

ri

. . . I2×2︸︷︷︸
Sij

. . . 02×2

]
= CT (φ̂i(k + 1))Hoij (13)

At each time instant robot i records Mi relative position measurements, described by the measurement matrix Hi(k + 1),
i.e., a matrix whose block rows are Hij(k + 1), j = 1 . . .Mi, i.e.:

Hi(k + 1) =




Hi1

Hi2

...
HiMi


 =




CT (φ̂i(k + 1))Hoi1

CT (φ̂i(k + 1))Hoi2

...
CT (φ̂i(k + 1))HoiMi


 = ΞT

φ̂i
(k + 1)Hoi

(14)

in the last expression Hoi
is a constant matrix whose block rows are Hoij

, j = 1 . . . Mi, and Ξφ̂i
(k + 1) = IMi×Mi

⊗
C(φ̂i(k + 1)), with ⊗ denoting the Kronecker matrix product.

In addition to measuring relative position measurements, one robot receives measurements of its position in the
global coordinate frame. Assuming that robot r1 is equipped with a GPS, the associated measurement matrix is:

HGPS =
[
I2×2 , 02×(2M+2N−2)

]

The measurement matrix H(k + 1) describing all the measurements that are performed time step k +1 is a matrix with
block rows Hi(k + 1), i = 1 . . .M , i.e.,

HR(k + 1) =




ΞT
φ̂0

Ho0

ΞT
φ̂1

(k + 1)Ho1

ΞT
φ̂2

(k + 1)Ho2

...
ΞT

φ̂M
(k + 1)HoM




= Diag
(
ΞT

φ̂i
(k + 1)

)




Ho0

Ho1

Ho2

...
HoM




= ΞT
(k + 1)Ho (15)

where Ξ(k + 1) = Diag
(
Ξφ̂i

(k + 1)

)
is a block diagonal matrix with block elements Ξφ̂i

(k + 1), for i = 0 . . . M ,
Ξφ̂0

(k + 1) is identity rotation matrix, and Ho is a matrix with block rows Hoi , i = 0 . . . M while Ho0 = HGPS .

• Measurement Error

The covariance for the error of the j-th measurement of robot i is given by

iRjj(k + 1) = Γij(k + 1)E{nij(k + 1)nT
ij(k + 1)}ΓT

ij(k + 1)

= Rzij (k + 1) + Rφ̃ij
(k + 1) (16)

This expression encapsulates all sources of noise and uncertainty that contribute to the measurement error z̃ij(k + 1).
More specifically, Rzij (k + 1) is the covariance of the noise nzij (k + 1) in the recorded relative position measurement
zij(k + 1) and Rφ̃ij

(k + 1) is the additional covariance term due to the error φ̃i(k + 1) in the orientation estimate of the
measuring robot. The latter is given by:

Rφ̃ij
(k + 1) = CT (φ̂i(k + 1))J∆̂pijk+1|kE{φ̃i

2}∆̂p
T

ijk+1|kJT C(φ̂i(k + 1))

= σ2
φi

CT (φ̂i(k + 1))J∆̂pijk+1|k∆̂p
T

ijk+1|kJT C(φ̂i(k + 1)) (17)
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From this expression we conclude that the uncertainty σ2
φi

in the orientation estimate φ̂i(k + 1) of the robot is amplified
by the distance between the robot and corresponding target. Each relative position measurement is comprised of the
range ρij and bearing θij of the target, expressed in the measuring robot’s local coordinate frame, i.e.,

zij(k + 1) =
[

ρij(k + 1) cos γij(k + 1) cos θij(k + 1)

ρij(k + 1) cos γij(k + 1) sin θij(k + 1)

]
+ nzij

(k + 1) (18)

By linearizing, the noise in this measurement can be expressed as:

nzij
(k + 1) '

[
cos γ̂ij cos θ̂ij −ρ̂ij sin γ̂ij cos θ̂ij

cos γ̂ij sin θ̂ij −ρ̂ij sin γ̂ij sin θ̂ij

] [
nρij (k + 1)

nγij
(k + 1)

]

where nρij
is the error in the range measurement, nθij

is the error in the bearing measurement, assumed to be inde-
pendent white zero-mean Gaussian sequences, and

ρ̂2
ij = ∆̂p

T

ijk+1|k∆̂pijk+1|k

θ̂ij = Atan2(∆̂yijk+1|k , ∆̂xijk+1|k)− φ̂i(k + 1)

are the estimates of the range, bearing and planar range of the targets, expressed with respect to the robot’s coordinate
frame. At this point we note that

C(φ̂i(k + 1))nzij (k + 1) =
[

cos φ̂i(k + 1) − sin φ̂i(k + 1)

sin φ̂i(k + 1) cos φ̂i(k + 1)

] [
cos θ̂ij −ρ̂ij sin θ̂ij

sin θ̂ij ρ̂ij cos θ̂ij

] [
nρij (k + 1)

nθij (k + 1)

]
=

[
cos(φ̂i(k + 1) + θ̂ij) −ρ̂ij sin(φ̂i(k + 1) + θ̂ij)
sin(φ̂i(k + 1) + θ̂ij) ρ̂ij cos(φ̂i(k + 1) + θ̂ij)

] [
nρij (k + 1)

nθij (k + 1)

]
=

[
1

ρ̂ij
∆̂pij J∆̂pij

] [
nρij (k + 1)

nθij (k + 1)

]
(19)

and therefore considering CT (φ)C(φ) = I2×2, the quantity Rzij (k + 1) can be written as:

Rzij (k + 1) = E{nzij (k + 1)nT
zij

(k + 1)}

= CT (φ̂i(k + 1))

[
1

ρ̂ij
∆̂pij

J∆̂pij

]T

E

{[
nρij

nθij

] [
nρij

nθij

]T
}[

1
ρ̂ij

∆̂pij

J∆̂pij

]
C(φ̂i(k + 1))

= CT (φ̂i(k + 1))

[
1

ρ̂ij
∆̂pij

J∆̂pij

]T [
σ2

ρi
0

0 σ2
θi

] [
1

ρ̂ij
∆̂pij

J∆̂pij

]
C(φ̂i(k + 1))

= CT (φ̂i(k + 1))

(
σ2

ρi

ρ̂2
ij

∆̂pij∆̂p
T

ij + σ2
θi

J∆̂pij∆̂p
T

ijJ
T

)
C(φ̂i(k + 1))

= CT (φ̂i(k + 1))

(
σ2

ρi

ρ̂2
ij

(
ρ̂2

ijI2×2 − J∆̂pij∆̂p
T

ijJ
T
)

+ σ2
θi

J∆̂pij∆̂p
T

ijJ
T

)
C(φ̂i(k + 1))

= CT (φ̂i(k + 1))

(
σ2

ρi
I2×2 +

(
σ2

θi
− σ2

ρi

ρ̂2
ij

)
J∆̂pij∆̂p

T

ijJ
T

)
C(φ̂i(k + 1)) (20)

where the variance of the noise in the distance and bearing measurements is given by

σ2
ρi

= E{n2
ρi
} , σ2

θi
= E{n2

θi
}

respectively. Due to the existence of the error component attributed to φ̃i(k + 1), the exteroceptive measurements
that each robot performs at a given time instant are correlated. The matrix of correlation between the errors in the
measurements zij(k + 1) and zi`(k + 1) is

iRj`(k + 1) = Γij(k)E{nij(k + 1)nT
i`(k + 1)}ΓT

i`(k)
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= σ2
φi

CT (φ̂i(k + 1))J∆̂pijk+1|k∆̂p
T

i`k+1|kJT C(φ̂i(k + 1)) (21)

The covariance matrix of all the measurements performed by robot i at the time instant k + 1 can now be computed.
This is a block matrix whose mn-th 2 × 2 submatrix element is iRmn, for m,n = 1 . . .Mi. Using the results of
Eqs. (17), (20), and (21), this matrix can be written as

Ri(k + 1) = ΞT
φ̂i

(k + 1)Roi
(k + 1)Ξφ̂i

(k + 1) (22)

where

Roi (k + 1) =




σ2
ρi

I2×2 +
(

σ2
φi

+ σ2
θi
− σ2

ρi

ρ̂2
i1

)
J∆̂pi1∆̂p

T

i1J
T . . . σ2

φi
J∆̂pi1∆̂p

T

iMi
JT

...
. . .

...

σ2
φi

J∆̂piMi
∆̂p

T

i1J
T . . . σ2

ρi
I2×2 +

(
σ2

φi
+ σ2

θi
− σ2

ρi

ρ̂2
iMi

)
J∆̂piMi

∆̂p
T

iMi
JT




(23)

= σ2
ρi

I2Mi×2Mi + Di(k + 1)

(
σ2

θi
IMi×Mi + σ2

φi
1Mi×Mi − diag

(
σ2

ρi

ρ̂2
ij

))
DT

i (k + 1)

= σ2
ρi

I2Mi×2Mi −Di(k + 1) diag

(
σ2

ρi

ρ̂2
ij

)
DT

i (k + 1)

︸ ︷︷ ︸
R1(k + 1)

+σ2
θi

Di(k + 1)DT
i (k + 1)︸ ︷︷ ︸

R2(k + 1)

+ σ2
φi

Di(k + 1)1Mi×MiD
T
i (k + 1)︸ ︷︷ ︸

R3(k + 1)

(24)

where

Di(k + 1) =




J∆̂pi1k+1|k . . . 02×1

...
. . .

...
02×1 . . . J∆̂piMik+1|k


 = Diag

(
J∆̂pijk+1|k

)

is a 2Mi ×Mi block diagonal matrix, depending on the estimated positions of the robots and landmarks. In Eq. (24)
the covariance term R1(k + 1) is the covariance of the error due to the noise in the range measurements, R2(k + 1) is
the covariance term due to the error in the bearing measurements, and R3(k + 1) is the covariance term due to the error
in the orientation estimates of the robot.

Since the measurements performed by different robots are independent, the covariance matrix of measurements
for the entire system is given by

R(k + 1) = Diag (Ri(k + 1)) = Diag
(
ΞT

φ̂i
Roi (k + 1)Ξφ̂i

)
= ΞT

(k + 1)Ro(k + 1)Ξ(k + 1) (25)

where Ro is a block diagonal matrix with block elements Roi , i = 0 . . . M and Ro0 is the covariance matrix of GPS
measurement given by:

Ro0 =
[
σ2

GPSx
0

0 σ2
GPSy

]
(26)

And Ξφ̂0
is the identity rotation matrix.

We now write the covariance update equation, which is

Pk+1|k+1 = Pk+1|k −Pk+1|kHT
(k + 1)

(
H(k + 1)Pk+1|kHT

(k + 1) + R(k + 1)
)−1

H(k + 1)Pk+1|k
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= Pk+1|k

−Pk+1|kHT
o Ξ(k + 1)

(
ΞT

(k + 1)HoPk+1|kHT
o Ξ(k + 1) + ΞT

(k + 1)Ro(k + 1)Ξ(k + 1)

)−1

ΞT
(k + 1)HoPk+1|k

= Pk+1|k −Pk+1|kHT
o

(
HoPk+1|kHT

o + Ro(k + 1)
)−1

HoPk+1|k (27)

In order to derive the last expression, property ΞT
(k + 1) = Ξ−1

(k + 1) was employed. This property is a consequence
of the definition of matrix Ξ(k + 1), and the fact that the rotation matrices satisfy CT (φ̂i) = C−1(φ̂i).

4 CLATT Positioning Accuracy Characterization

4.1 The Riccati Recursion
The metric we employ in order to characterize the positioning performance of the current problem is the covariance
matrix of the robots and target position estimates. By combining Eqs. (8) and (27) we derive the discrete-time Riccati
recursion, that describes the time evolution of the covariance matrix:

Pk+2|k+1 = Pk+1|k −Pk+1|kHT
o

(
HoPk+1|kHT

o + Ro(k + 1)
)−1

HoPk+1|k + Q(k + 1)

This recursion provides the value of the covariance matrix at each time step, right after the propagation phase of the
EKF. To simplify the notation, we set Pk = Pk+1|k and Pk+1 = Pk+2|k+1, and therefore we can write

Pk+1 = Pk −PkHT
o

(
HoPkHT

o + Ro(k + 1)
)−1

HoPk + Q(k + 1) (28)

We note that the matrices Q(k + 1) and Ro(k + 1) in this Riccati recursion are time varying, and this does not allow
the derivation of any closed form expressions for the time evolution of Pk, in the general case. Therefore we have to
derive some bounds for the covariance of the robots and target position estimates. The following two lemmas are the
basis of our analysis:

Lemma 4.1 If Ru and Qu are matrices such that Ru º Ro(k) and Qu º Q(k) for all k ≥ 0, then the solution to the
Riccati recursion

Pu
k+1 = Pu

k −Pu
kH

T
o

(
HoP

u
kH

T
o + Ru

)−1
HoP

u
k + GoQuGT

o (29)

with the initial condition Pu
0 = P0, satisfies Pu

k º Pk for all k ≥ 0.

Lemma 4.2 If R̄ and Q̄ are matrices such that R̄ = E{Ro(k)} and Q̄ = E{Q(k)} for all k ≥ 0, then the solution
to the Riccati recursion

P̄k+1 = P̄k − P̄kHT
o

(
HoP̄kHT

o + R̄
)−1

HoP̄k + Q̄ (30)

with the initial condition P̄0 = P0, satisfies P̄k º E{Pk} for all k ≥ 0.

Essentially, Lemma 4.1 maintains that in order to derive an upper bound on the worst-case covariance matrix of the
position estimates of robots and target, it suffices to derive upper bounds for the covariance matrices of the system and
measurement noise, and to solve a constant coefficient Riccati recursion. Similarly, Lemma 4.2 states that an upper
bound on the expected positioning uncertainty of the robots and the target is determined as the solution of a constant
coefficient Riccati recursion, where the covariance matrices of the system and measurement noise have been replaced
by their average values. The proofs for these lemmas are given in Appendices A and B respectively. In the remainder
of this section, we derive appropriate upper bounds, as well as the average values of the matrices Q(k) and Ro(k)

respectively.

• Derivation of upper bounds for Q(k) and Ro(k)

In order to derive an upper bound for the covariance matrix Qr(k) we note that (cf. Eq. (7))

Q(k) =
[

Diag(Qri (k)) 02M×2N

02N×2M IN ⊗QT

]
(31)
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where for i = 1 . . . M :

Qri
(k) = C(φ̂i(k))

[
δt2σ2

Vi
0

0 δt2V 2
mi

(k)σ2
φi

]
CT (φ̂i(k))

and,

QT =
[

σ2
Tx

0
0 σ2

Ty

]

From the properties of rotation matrices it is known that C−1(φ̂i(k)) = CT (φ̂i(k)), and thus Qri (k) is related by a
similarity transformation to the matrix [

δt2σ2
Vi

0
0 δt2V 2

mi
(k)σ2

φi

]

for i = 1 . . . M . So the eigenvalues of Qri
(k), i = 1 . . . M are δt2σ2

Vi
and δt2V 2

mi
(k)σ2

φi
. We assume that the velocity

of each robot is approximately constant, and equal to Vi, and denote

qi = max
(
δt2σ2

Vi
, δt2V 2

mi
(k)σ2

φi

) ' max
(
δt2σ2

Vi
, δt2V 2

i σ2
φi

)
, i = 1 . . . M (32)

This definition states that qi is the largest eigenvalue of Qri (k), and therefore

Qri
(k) ¹ C(φ̂i(k))qiI2×2C

T (φ̂i(k)) = qiI2×2 = Qui
(33)

for i = 1 . . .M . Considering that QT is fixed and independent from the state vector variables, it can be used directly
as the upper bound:

QuT = QT =
[
σ2

Tx
0

0 σ2
Ty

]
(34)

Finally the upper bound for the covariance of the entire system can be written as:

Qu =
[

Diag(Qui (k)) 02M×2N

02N×2M IN ⊗QuT

]
(35)

The upper bound on Ro(k) is obtained by considering each if its block diagonal elements, Roi (k). Referring to
Eq. (24), we examine the terms R1(k) , R2(k) and R3(k) separately for range measurement (GPS measurement will be
considered later). The term expressing the effect of the noise in the range measurements is

R1(k) = σ2
ρi

I2Mi×2Mi −Di(k) diag

(
σ2

ρi

ρ̂2
ij

)
DT

i (k) ¹ σ2
ρi

I2Mi×2Mi (36)

The last matrix inequality follows from the fact that the term being subtracted from σ2
ρi

I2Mi×2Mi is a positive semidef-
inite matrix. The covariance term due to the noise in the bearing measurement is

R2(k) = σ2
θi

Di(k)DT
i (k)

= σ2
θi
Diag

(
ρ̂2

ij

[
sin2(θ̂ij) sin(θ̂ij) cos(θ̂ij)

sin(θ̂ij) cos(θ̂ij) cos2(θ̂ij)

])

¹ σ2
θi
Diag

(
ρ̂2

ijI2×2

)

¹ σ2
θi

ρ2
oI2Mi×2Mi (37)

where ρo is the maximum range at which a measurement can occur, determined either by the characteristics of the
robots’ sensors or by the properties of the area in which the robots move. The other covariance term is due to the error
in the orientation of the measuring robot, R3(k) = σ2

φi
Di(k)1Mi×MiD

T
i (k). Calculation of the eigenvalues of the ma-

trices 1Mi×Mi and IMi×Mi verifies that 1Mi×Mi ¹ MiIMi×Mi , and thus we can write R3(k) ¹ Miσ
2
φi

Di(k)DT
i (k).

By derivations analogous to those employed to yield an upper bound for R2(k), we can show that

R3(k) ¹ Miσ
2
φi

ρ2
oI2Mi×2Mi

(38)
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By combining this result with those of Eqs. (36), (37), (38) we can write Roi
(k) = R1(k)+R2(k)+R3(k) ¹ Ru

i , i =
1 . . .M , where

Ru
i =

(
σ2

ρi
+ Miσ

2
φi

ρ2
o + σ2

θi
ρ2

o

)
I2Mi×2Mi = riI2Mi×2Mi (39)

with
ri = σ2

ρi
+ (Miσ

2
φi

+ σ2
θi

)ρ2
0 (40)

For the Ro0 , the GPS measurement covariance is constant and equal to its upper bound:

Ru
0 =

[
σ2

GPSx
0

0 σ2
GPSy

]

Thus an upper bound for Ro is given by

Ro(k) = Diag(Roi
(k)) ¹ Diag(Ru

i ) = Ru (41)

• Derivation of the Expected Values of Qr(k) and Ro(k)

In order to derive the average value of Qr(k) we note that for i = 1 . . . M

Qri
(k) = C(φ̂i(k))

[
δt2σ2

Vi
0

0 δt2V 2
mi

(k)σ2
φi

]
CT (φ̂i(k))

= δt2


 σ2

Vi
cos2(φ̂i) + V 2

mi
(k)σ2

φi
sin2(φ̂i)

(
σ2

Vi
− V 2

mi
(k)σ2

φi

)
sin(φ̂i) cos(φ̂i)(

σ2
Vi
− V 2

mi
(k)σ2

φi

)
sin(φ̂i) cos(φ̂i) σ2

Vi
sin2(φ̂i) + V 2

mi
(k)σ2

φi
cos2(φ̂i)




and therefore, by averaging over all values of orientation, the expected value of Qri (k) is derived:

E{Qri (k)} = δt2
σ2

V + V 2
i σ2

φi

2
I2×2 = q̄iI2×2

The system noise covariance of the target is assumed to be constant, so it is the same as its expected value

E{QT } =
[

σ2
Tx

0
0 σ2

Ty

]

Thus,

Q̄ = E{Q(k)} =
[

Diag (E{Qri (k)}) 03M×3N

03N×3M IN ⊗ E{QT }
]

(42)

(43)

Now the average values of the matrices Roi (k), i = 1 . . . M need to be determined, in order to compute E{R′
o(k)}

(GPS measurement will be considered consequently). From Eq. (24) we note that evaluation of the average value of
Roi (k) requires the computation of the expected values of the following terms:

T1 =
∆̂pij∆̂p

T

ij

ρ̂2
ij

, T2 = ∆̂pij∆̂p
T

ij , and T3 = ∆̂pij∆̂p
T

iT (44)

for j, ` = 1 . . .Mi. The average value of T1 is easily derived by employing the polar coordinate description of the
vector ∆̂pij in terms of ρ̂ij and ϕ̂ij = φ̂i(k + 1) + θ̂ij , which yields (cf. Eq. (19))

T1 =
∆̂pij∆̂p

T

ij

ρ̂2
ij

=
1

ρ̂2
ij

[
ρ̂2

ij cos2(ϕ̂ij) ρ̂2
ij sin(ϕ̂ij) cos(ϕ̂ij)

ρ̂2
ij sin(ϕ̂ij) cos(ϕ̂ij) ρ̂2

ij sin2(ϕ̂ij)

]
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=
[

ρ̂2
ij cos2(ϕ̂ij) ρ̂2

ij sin(ϕ̂ij) cos(ϕ̂ij)
ρ̂2

ij sin(ϕ̂ij) cos(ϕ̂ij) ρ̂2
ij sin2(ϕ̂ij)

]
(45)

From the last expression we conclude that for any probability density function that guarantees a uniform distribution
for the bearing angle on [0 , 2π], the average value of the term T1 is

E{T1} =
1
2
I2×2

In order to compute the expected value of the terms T2 and T3, we assume that the robots and the target are located in a
square arena of side α, and that their positions are described by uniformly distributed random variables in the interval
[−α/2, α/2]. Thus we can write,

E{T2} = E

{[
∆̂x

2

ij ∆̂xij∆̂yij

∆̂yij∆̂xij ∆̂y
2

ij

]}
(46)

The non-diagonal elements of the above matrix are always zero as we suppose the variables are independent. For
example:

E{∆̂xij∆̂yij} = E{∆̂xij}E{∆̂yij} = 0

The diagonal elements can be computed readily:

E{∆̂x
2

ij} = E{x2
i − 2xixj + x2

j} =
α2

6

Therefore,

E{T2} =
α2

6
I2×2

Similarly,

E{T3} = E{∆̂pij∆̂p
T

iT } = E

{[
∆̂xij∆̂xiT ∆̂xij∆̂yiT

∆̂yij∆̂xiT ∆̂yij∆̂yiT

] }

=
[

E{xjxT − xixT − xjxi + x2
i } E{xjyT − xjyi − xiyT + xiyi}

E{yjxT − yjxi − yixT + yixi} E{yjyT − yiyT − yjyi + y2
i }

]

=
[

E{x2
i } 0

0 E{y2
i }

]

=

[
α2

12 0
0 α2

12

]

=
α2

12
I2×2

These results enable us to obtain the average value of the matrices Roi (k), i = 1 . . .M . Employing the linearity of the
expectation operator yields

R̄i = E{Roi (k)}

=




(
1
2σ2

ρi
+ α2

6 σ2
φi

+ α2

6 σ2
θi

)
I2×2 . . . α2

12 σ2
φi

I2×2

...
. . .

...
α2

12 σ2
φi

I2×2 . . .
(

1
2σ2

ρi
+ α2

6 σ2
φi

+ α2

6 σ2
θi

)
I2×2




=
(

1
2
σ2

ρi
+

α2

12
σ2

φi
+

α2

6
σ2

θi

)
I2Mi×2Mi +

α2

12
σ2

φi
(1Mi×Mi ⊗ I2×2)
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And the covariance of GPS measurement noise is constant, so its expected value is:

R̄0 = E{Ro0 (k)} =
[
σ2

GPSx
0

0 σ2
GPSy

]
(47)

The average value of Ro(k) is therefore

R̄ = E{Ro(k)}
= Diag(R̄i) (48)

4.2 Evaluation of the Upper Bounds with Finite Target Noise Covariance
Lemmas 4.1 and 4.2 allow the evaluation of upper bounds on the worst case uncertainty and on the average uncertainty
of the position estimates of the robots and the target , at any time instant after the deployment of the robot team. This
can be achieved, for example, by numerical evaluation of the solution to the recursions in Eqs. (29) and (30) respec-
tively. For many applications, it is of interest however, to study the steady-state behavior of the positioning uncertainty
in of CLATT. For this reason, we now derive the steady-state values of the solutions to the recursions (29) and (30).
By “steady-state values” we refer to the values of the covariance matrix after a sufficient time has elapsed, enough for
the the initial transient phenomena in the solutions to subside. The steady state solutions are derived by evaluating
the limit of Pu

k and P̄k as k → ∞. We note at this point that the Riccati recursions of Eqs. (29) and (30) essentially
describe the time evolution of the covariance of the position estimates in two hypothetical CLATT scenarios, where
the system model is a Linear Time Invariant (LTI) one. Therefore, the problem of computing the upper bounds on
the steady state positioning uncertainty in CLATT reduces to the problem of determining the steady state covariance
matrix for a LTI CLATT system model.

To avoid redundant derivations, in the following we will solve for the steady state solution of the following Riccati
recursion:

Ps
k+1 = Ps

k −Ps
kH

′T
o

(
H′

oP
s
kH

′T
o + Rs

)−1
H′

oP
s
k + Qs (49)

After deriving the steady state solution of this recursion, we employ the substitutions

Rs → Ru, Qs → Qu

and
Rs → R̄ , Qs → Q̄

in order to obtain the steady state solutions of the Riccati recursions of Lemmas (4.1) and (4.2) respectively.
We first note that the Riccati recursion in Eq. (49) can be reformulated as follows, by use of the matrix inversion

lemma (cf. Appendix C):

Ps
k+1 = Ps

k −Ps
kH

T
o

(
HoPs

kH
T
o + Rs

)−1
HoPs

k + Qs

= Ps
k

(
I2N×2N + HT

o R−1
s HoPs

k

)−1
+ Qs (50)

The derivations are simplified by defining the normalized covariance matrix as

Pnk
= Q−1/2

s Ps
kQ

−1/2
s (51)

Pre- and post-multiplying Eq. (50) by Q−1/2
s , and simple algebraic manipulation yields

Pnk+1 = Pnk
(I2N×2N + CsPnk

)−1 + I2N×2N (52)

where
Cs = Q1/2

s HT
o R−1

s HoQ1/2
s

Note that the only parameter in the Riccati recursion (52) is the matrix Cs, which contains the main parameters that
characterize the localization performance of the robotic team. The eigenvalues of this matrix, which are studied in
Appendix D, are in close relation with the type and number of exteroceptive measurements recorded by the robots
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of the team, and determine the properties of the upper bound on the steady-state positioning uncertainty. To further
simplify the derivations, we denote the Singular Value Decomposition (SVD) of Cs as

Cs = Us diag(λi)UT
s = UsΛUT

s

and substituting in Eq. (52) we obtain2

Pnk+1 = Pnk

(
I + UsΛUT

s Pnk

)−1
+ I ⇒

UT
s Pnk+1Us = UT

s Pnk
UsUT

s

(
I + UsΛUT

s Pnk

)−1
Us + I ⇒

UT
s Pnk+1Us = UT

s Pnk
Us

(
I + ΛUT

s Pnk
Us

)−1
+ I

We define

Pnnk
= UT

s Pnk
Us (53)

and we obtain the recursion

Pnnk+1 = Pnnk+1

(
I + ΛPnnk+1

)−1 + I (54)

This form of the recursion is simpler, since now the only parameter is the diagonal matrix of the eigenvalues of Cs.

4.2.1 Observable system

As one of the robots is equipped with GPS, the system is observable [16], and therefore the covariance of the robots and
target position estimation remains bounded at steady state. For this case, it is shown in Appendix D that rank(Cs) =
2M + 2, and therefore all the singular values of Cs are positive.

Since we are dealing with an observable system, the solution to Eq. (54) will converge to a constant value at steady
state, determined by solving the Discrete Algebraic Riccati Equation (DARE):

Pnnss = Pnnss (I + ΛPnnss)
−1 + I

Since the system is both controllable and observable, the solution of the above DARE is unique [17]. Therefore, we
can ”guess” a solution, and if it satisfies the DARE, we can be assured that this is the only possible solution. We now
assume a diagonal form for Pnnss . In that case, all the matrices in the above DARE are diagonal, and thus we obtain
the following set of 2M + 2 independent equations:

Pnnss(i, i) =
Pnnss(i, i)

1 + λiPnnss(i, i)
+ 1, i = 1 . . . 2M + 2 (55)

Whose solution is given by

Pnnss(i, i) =
1
2

+
√

1
4

+
1
λi

By substitution of this result in Eqs. (53) and (51), we obtain the steady state solution to the Riccati recursion (49):

Ps
ss = Q1/2

s Us diag
(

1
2

+
√

1
4

+
1
λi

)
UT

s Q1/2
s (56)

Finally, from this result, by setting
Rs → Ru, Qs → Qu

and
Rs → R̄ , Qs → Q̄

we can derive the following lemmas:

2To make the notation less cumbersome, we hereafter omit the dimension index from the identity matrices, whenever their dimension is equal
to the dimension of the state covariance matrix. I.e., from this point on, I = I2N×2N .
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Lemma 4.3 The steady state covariance of the position estimates for a team of robots performing CLATT, when at
least one robot has access to absolute positioning information is bounded above by the matrix

Pu
ss = Q1/2

u Uu diag

(
1
2

+

√
1
4

+
1

λui

)
UT

u Q1/2
u (57)

where we have denoted the singular value decomposition of Cu = Q1/2
u HT

o R−1
u HoQ

1/2
u as Cu = Uu diag(λui

)UT
u .

Lemma 4.4 The expected steady state covariance of the position estimates for a team of robots performing CL, when
at least one robot has access to absolute positioning information is bounded above by the matrix

P̄ss = Q̄1/2Ūdiag
(

1
2

+
√

1
4

+
1
λ̄i

)
ŪT Q̄1/2 (58)

where we have denoted the singular value decomposition of C̄ = Q̄1/2HT
o R̄−1HoQ̄1/2 as C̄ = Ūdiag(λ̄i)ŪT .

At this point we should note that the upper bounds on the steady-state uncertainty depend on the topology of the RPMG
and the accuracy of the proprioceptive and exteroceptive sensors of the robots. However, the steady-state uncertainty
is independent of the initial covariance of the robots, which comes as no surprise, since the system is observable.

4.3 Evaluation of the Upper Bounds with Infinite Target Noise Covariance
The zero velocity target model is the simplest target tracking model. Instead of using more complex target models,
the target noise can be increased so that higher order models are included in this simple model. In this section, we
consider CLATT when target noise approach infinity and we will find a performance bound for the robots and target
positions.

Starting from equation (50), the Riccati equation can be arranged as:

Pk+1 = Pk −PkHT
o

(
HoPkHT

o + Rs

)−1
HoPk + Qs

= Pk

(
I2N×2N + HT

o R−1
s HoPk

)−1
+ Qs

=
(
P−1

k + HT
o R−1

s Ho

)−1
+ Qs (59)

where the superscript s on P is ignored for simplicity. The term Ψ = HT
o R−1

s Ho is the new information added after
each measurement step and is constant as long as RPMG is not changed.

Considering

Qs =
[
Qrr 0
0 Qtt

]
, Qtt = µI2×2 (60)

where µ →∞, Pk+1 is:

[
Prr Prt

Ptr Ptt

]

(k + 1)
= lim

µ→∞

([
Prr Prt

Ptr Ptt + µI2×2

]−1

(k)
+

[
Ψ11 Ψ12

Ψ21 Ψ22

])−1

+ Qs

=
([

P−1
rrk

0
0 0

]
+

[
Ψ11 Ψ12

Ψ21 Ψ22

])−1

+ Qs

=
[
P−1

rrk
+ Ψ11 Ψ12

Ψ21 Ψ22

]−1

+ Qs

=




(
P−1

rrk
+ Ψ11 −Ψ12Ψ−1

22 Ψ21

)−1
Υ

ΥT
(
Ψ22 −Ψ21

(
(Prrk

)−1 + Ψ11

)−1
Ψ12

)−1


 + Qs

(61)
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So the Riccati equation for the target and the robots can be separated. Given that matrix Ψ is constant, performance
of the target position estimation right after update is constant:

Ptt =
(
Ψ22 −Ψ21

(
(Prrk

)−1 + Ψ11

)−1
Ψ12

)−1

(62)

Clearly this formula is not applicable after propagation and position covariance of the target will be infinite at that
time. The recursive formula for the performance bound of position estimation of the robots is:

Prrk+1 =
(
P−1

rrk
+ Ψrr

)−1
+ Qrr

= Prrk
(I2N×2N + ΨrrPrrk

)−1 + Qrr (63)

where

Ψrr = Ψ11 −Ψ12Ψ−1
22 Ψ21 (64)

Eq. (63) is similar to Eq. (50) and it can be solved in the same way:

Pnk
= Q−1/2

rr Prrk
Q−1/2

rr (65)

Pre- and post-multiplying Eq. (63) by Q−1/2
s , and simple algebraic manipulation yields

Pnk+1 = Pnk
(I2N×2N + CrrPnk

)−1 + I2N×2N (66)

where
Crr = Q1/2

rr ΨrrQ1/2
rr

Crr = Urr diag(λi)UT
rr = UrrΛUT

rr (67)

At this point it should be noted that all the eigenvalues of Ψrr are positive because HT
o R−1

s Ho is positive definite as
studied in Appendix D and by using the rule:

detA = detA11 det
(
A22 −A21A−1

11 A12

)

where

A =
[
A11 A12

A21 A22

]

Now, using similar mathematical manipulation to Eqs. (50)-(56), the solution to this problem can be found as:

Prr = Q1/2
r Ur diag

(
1
2

+
√

1
4

+
1
λi

)
UT

r Q1/2
r (68)
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A Upper Bound Riccati Recursion
In this appendix we prove that if R′

u º R′
o(k) and Qu º Qr(k) for all k ≥ 0, then the solutions to the following two

Riccati recursions

Pk+1 = Pk −PkH′T
o

(
H′

oPkH′T
o + R′

o(k + 1)
)−1

H′
oPk + GoQr(k + 1)GT

o (69)

and

Pu
k+1 = Pu

k −Pu
kH

′T
o

(
H′

oP
u
kH

′T
o + R′

u

)−1
H′

oP
u
k + GoQuGT

o (70)

with the same initial condition, P0, satisfy Pu
k º Pk for all k ≥ 0. The proof is carried out by induction, and requires

the following two intermediate results:

• Monotonicity with respect to the measurement covariance matrix

If R1 º R2, then for any P º 0

P−PHT
(
HPHT + R1

)−1
HP + Qo º P−PHT

(
HPHT + R2

)−1
HP + Qo (71)

This statement is proven by taking into account the properties of linear matrix inequalities:

R1 º R2 ⇒
HPHT + R1 º HPHT + R2 ⇒(

HPHT + R1

)−1 ¹ (
HPHT + R2

)−1 ⇒
PHT

(
HPHT + R1

)−1
HP ¹ PHT

(
HPHT + R2

)−1
HP ⇒

−PHT
(
HPHT + R1

)−1
HP º −PHT

(
HPHT + R2

)−1
HP ⇒

P−PHT
(
HPHT + R1

)−1
HP + Qo º P−PHT

(
HPHT + R2

)−1
HP + Qo

• Monotonicity with respect to the state covariance matrix

The solution to the Riccati recursion at time k + 1 is monotonic with to the solution at time k, i.e., if P(1)
k and

P(2)
k are two different solutions to the same Riccati recursion at time k, with P(1)

k º P(2)
k then P(1)

k+1 º P(2)
k+1. In

order to prove the result in the general case, in which P(1)
k and P(2)

k are positive semidefinite, we use the following
expression that relates the one-step ahead solutions to two Riccati recursions with identical H, Q and R matrices, but
different initial values P(1)

k and P(2)
k ([17]). It is

P(2)
k+1 −P(1)

k+1 = Fp,k

((
P(2)

k −P(1)
k

)
−

(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)
H

(
P(2)

k −P(1)
k

))
FT

p,k (72)

where Fp,k is a matrix whose exact structure is not important for the purposes of this proof. Since we have assumed
P(1)

k º P(2)
k we can write P(2)

k −P(1)
k ¹ 0. Additionally, the matrix

(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)
H

(
P(2)

k −P(1)
k

)

is positive semidefinite, and therefore we have

−
(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)
H

(
P(2)

k −P(1)
k

)
¹ 0 ⇒

(
P(2)

k −P(1)
k

)
−

(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)
H

(
P(2)

k −P(1)
k

)
¹ 0 ⇒

Fp,k

((
P(2)

k −P(1)
k

)
−

(
P(2)

k −P(1)
k

)
HT

(
HP(2)

k HT + R
)
H

(
P(2)

k −P(1)
k

))
FT

p,k ¹ 0 ⇒
P(2)

k+1 −P(1)
k+1 ¹ 0
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The last line implies that P(1)
k+1 º P(2)

k+1, which is the desired result.

We can now employ induction to prove the main statement of this appendix. Assuming that at some time instant i,
Pu

i º Pi, we can write

Pu
i+1 = Pu

i −Pu
i H

′T
o

(
H′

oP
u
i H

′T
o + R′

u

)−1
H′

oP
u
i + GoQuGT

o

º Pi −PiH′T
o

(
H′

oPiH′T
o + R′

u

)−1
H′

oPi + GoQuGT
o

º Pi −PiH′T
o

(
H′

oPiH′T
o + R′

u

)−1
H′

oPi + GoQr(k + 1)GT
o

º Pi −PiH′T
o

(
H′

oPiH′T
o + R′

o(k + 1)
)−1

H′
oPi + GoQr(k + 1)GT

o = Pi+1

where the monotonicity of the Riccati recursion with respect to the covariance matrix, the property Qu º Qr(k + 1)

and the monotonicity of the Riccati recursion with respect to the measurement covariance matrix have been used in the
last three lines. Thus Pu

i º Pi ⇒ Pu
i+1 º Pi+1. For i = 0 the condition Pu

i º Pi holds with equality, and therefore
for any i > 0, the solution to the Riccati recursion in Eq. (69) is an upper bound to the solution of the recursion in
Eq. (70).

B Riccati Recursion for the Upper Bound on the Average Covariance
In this appendix we prove that if R̄′ and Q̄r are matrices such that R̄′ = E{R′

o(k)} and Q̄r = {Qr(k)} for all k ≥ 0,
then the solutions to the following two Riccati recursions

Pk+1 = Pk −PkH′T
o

(
H′

oPkH′T
o + R′

o(k + 1)
)−1

H′
oPk + GoQr(k + 1)Go (73)

and

P̄k+1 = P̄k − P̄kH′T
o

(
H′

oP̄kH′T
o + R̄′)−1

H′
oP̄k + GoQ̄rGT

o (74)

with the same initial condition, P0, satisfy P̄k º E{Pk} for all k ≥ 0. We first prove a useful intermediate result:

• Concavity of the Riccati recursion

We note that the Riccati recursion

Pk+1 = Pk − PkHT
(
HPkHT + Rk+1

)−1
HPk + GQk+1G (75)

can equivalently be written as

Pk+1 =
[

I 0
] [

Pk 0
0 Rk+1

] [
I
0

]

− [
I 0

] [
Pk 0
0 Rk+1

] [
HT

0

]([
H I

] [
Pk 0
0 Rk+1

] [
HT

I

])−1 [
H 0

] [
Pk 0
0 Rk+1

] [
I
0

]

+ GQk+1G

our goal is to show that the above expression is concave with respect to the matrix
[

Pk 0
0 Rk+1

]

A sufficient condition for this is that the function

f(X) = AXB
(
CXCT

)−1
BT XAT (76)
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is convex with respect to the positive semidefinite matrix X , when A,B,C are arbitrary matrices of compatible dimen-
sions. This is equivalent to proving the convexity of the function of the scalar variable t

ft(t) = A(Xo + tZo)B
(
C(Xo + tZo)CT

)−1
BT (Xo + tZo)AT (77)

with domain those values of t for which Xo + tZo º 0, Xo º 0 is convex [18]. ft(t) is convex if and only if the scalar
function

f ′t(t) = zT A(Xo + tZo)B
(
C(Xo + tZo)CT

)−1
BT (Xo + tZo)AT z (78)

is convex for any vector z of appropriate dimensions [18]. Moreover, it is well known that a function is convex if and
only if its epigraph is a convex set, and therefore we obtain the following convexity condition for f(X):

f(X) convex ⇔ {s, t|zT A(Xo + tZo)B
(
C(Xo + tZo)CT

)−1
BT (Xo + tZo)AT z ≤ s} is convex

However, from the properties of Schur complements it is well known that if Ao Â 0 then
[

Ao Bo

BT
o Co

]
º 0 ⇔ Co −BT

o C−1
o B º 0

In our problem, the matrix C(Xo + tZo)CT is clearly positive definite, and thus we can write

zT A(Xo+tZo)B
(
C(Xo + tZo)CT

)−1
BT (Xo+tZo)AT z ≤ s ⇔

[
C(Xo + tZo)CT BT (Xo + tZo)AT z
zT A(Xo + tZo)B s

]
º 0

However, the defining matrix inequality of the epigraph is equivalent to
[

CXoC
T BT XoA

T z
zT AXoB 0

]
+ t

[
CZoC

T BT ZoA
T z

zT AZoB 0

]
+ s

[
0 0
0 1

]
º 0

which defines a convex set in (s, t) [18].
Thus, by the preceding analysis f(X) is a convex function, and consequently Pk+1 is a concave function of the

matrix [
Pk 0
0 Rk+1

]

We now employ this result to prove the main result of this appendix. The proof is carried out by induction. Assuming
that at time step k the inequality P̄k º E{Pk} holds, we will show that it also holds for the time step k + 1. We have

Pk+1 = Pk −PkH′T
o

(
H′

oPkH′T
o + R′

o(k + 1)
)−1

H′
oPk + GoQ(k + 1)GT

o ⇒
E{Pk+1} = E{Pk −PkH′T

o

(
H′

oPkH′T
o + R′

o(k + 1)
)−1

H′
oPk + GoQ(k + 1)GT

o }
= E{Pk −PkH′T

o

(
H′

oPkH′T
o + R′

o(k + 1)
)−1

H′
oPk}+ GoE{Q(k + 1)}GT

o

¹ E{Pk} − E{Pk}H′T
o

(
H′

oE{Pk}H′T
o + E{R′

o(k + 1)})−1
H′

oE{Pk}+ GoE{Q(k + 1)}GT
o

where in the last line the concavity of Jensen’s inequality was applied [18], in order to exploit tht concavity of the
Riccati. By assumption, P̄k º E{Pk} and employing the property of the monotonicity of the Riccati with respect to
the covariance matrix (cf. Appendix A), we can write

E{Pk+1} ¹ P̄k − P̄kH′T
o

(
H′

oP̄kH′T
o + E{R′

o(k + 1)})−1
H′

oP̄k + GoE{Q(k + 1)}GT
o

= P̄k − P̄kH′T
o

(
H′

oP̄kH′T
o + R̄′})−1

H′
oP̄k + GoQ̄rGT

o

= P̄k+1

Thus, P̄k º E{Pk} ⇒ P̄k+1 º E{Pk+1}. For k = 0 the condition P̄k º E{Pk} holds with equality, and the proof
is complete.

TR-2005-004. r153 19



C Matrix Inversion Lemma
If A is n× n, B is n×m, C is m×m and D is m× n then:

(A−1 + BC−1D)−1 = A−AB(DAB + C)−1DA (79)

D Rank and Nullspace of the Measurement Matrices
In this appendix we present some results concerning the rank of the measurement matrices in CL, as well as the rank
and eigenvectors of the matrix:

Cs = Q1/2
s HT

o R−1
s HoQ1/2

s

Where the matrices Q1/2
s and Rs can be substituted for either by the upper bounds, or by the average values of the

corresponding covariance matrices.
We first note that,in the case in which the robots receive only relative position measurements, Ho consists of block

rows of the form
[

02×2 .. −I2×2 .. I2×2 .. 02×2

]
=

[
0 .. −1 .. 1 .. 0

]⊗ I2×2

while if the some of the robots additionally receive absolute position measurements, Ho also has some block rows of
the form

[
02×2 .. I2×2 .. 02×2

]
=

[
0 .. 1 .. 0

]⊗ I2×2

We therefore conclude, that in any case, the matrix Ho can be expressed as

Ho = H ⊗ I2×2 (80)

where H is an appropriate matrix, consisting of rows having one of the two following structures:

Hij =
[

0 .. −1 .. 1 .. 0
]

or
H` =

[
0 .. 1 .. 0

]

It becomes clear that the matrix H will be the measurement matrix associated with a 1D CL system model, in which
the robot team has the same RPMG as the team of robots performing localization in 2D (cf. Section ??).

Employing the properties of the Kronecker product, from Eq. (80) we conclude that

rank(Ho) = rank(H) rank(I2×2) = 2 · rank(H) (81)

and therefore we can determine the rank of Ho by first studying the properties of the 1D-measurement matrix H . For
this reason, we start by presenting the results for the, simpler, one-dimensional CL case (cf. Section ??).

D.1 Cooperative Localization in 1D
For the one-dimensional case, when no absolute position measurements are available, the measurement matrix H is
defined by

H =




Hij

...
Hkl

...
Hmn




(82)

where each row of H corresponds to one relative position measurement, or equivalently, to one edge of the RPMG.
Each of the rows contains a “-1”, at the column that corresponds to the robot i registering the relative position measure-
ment, and a “1” at the column that corresponds to the robot being observed. This matrix is identical to the incidence
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matrix defined for any directed graph. In [19] it is shown that the incidence matrix of a directed graph is of rank N−1,
whenever the graph is connected, and therefore the rank of H is N − 1, where we have imposed the constraint that the
measurement graph is connected3.

Having determined the rank of H , we are now able to study the rank and eigenvectors of the matrix

C = Q1/2HT R−1HQ1/2

where Q and R are diagonal and positive definite. In order to determine the rank of this matrix, we use the following
lemma from linear algebra [19]:

Lemma D.1 The rank of the product of two matrices A, B is given by

rank(AB) = rank(B)− dim
(
N(A)

⋂
R(B)

)
(83)

where dim X
⋂

Y denotes the dimension of the subspace formed by the intersection of the subspaces X and Y , N(A)
is the nullspace of matrix A, and R(B) is the range of B.

Note that the matrix product HT R−1H can be written as HT R−1/2R−1/2H = (R−1/2H)T R−1/2H . We now
apply the above lemma to the matrix product M = R−1/2H . Since R−1/2 is an invertible matrix, its nullspace is
of dimension 0, and we have rank(M) = rank(R−1/2H) = rank(H) = N − 1. Moreover, it is evident that the
nullspace of M will be the same with the nullspace of H . In order to find the rank of HT R−1H = MT M we employ
the above lemma once again:

rank(HT R−1H) = rank(MT M) = rank(M)− dim
(
N(M)

⋂
R(M)

)

Since the nullspace and the range of any matrix are disjoint sets, rank(HT R−1H) = N − 1. By consecutive appli-
cation of the above lemma to the matrix products (HT R−1H)Q1/2 and Q1/2(HT R−1HQ1/2) it is easy to show that
rank(C) = N − 1.

A direct consequence of this result is that C has one eigenvalue equal to zero, and that its nullspace is of dimension
1. Note that since the sum of all elements of the rows of H is zero, we obtain

H1N×1 = 0N×1

hence the basis of the nullspace of H is the vector xN = 1N×1. As a result, we deduce that the basis vector for the
nullspace of C is given by

UN =
1

||Q−1/21N×1||
Q−1/21N×1

since

CUN =
1

||Q−1/21N×1||
Q1/2HT R−1HQ1/2Q−1/21N×1 =

1
||Q−1/21N×1||

Q1/2HT R−1 (H1N×1) = 0N×1

Simpe calculations show that

UN =
1

||Q−1/21N×1||
Q−1/21N×1 =

1
(∑N

i=1
1
qi

)1/2
Q−1/21N×1 =

√
qtotal Q−1/21N×1

where
1

qtotal
=

N∑

i=1

1
qi

Finally, by applying simple vector-matrix multiplication, we obtain the following result, which is useful in the deriva-
tions in Section ??:

Q1/2UNUT
NQ1/2 = qtotal1N×N (84)

3This is not a restraining assumption. The case in which the RPMG is not connected is a degenerate one. In this case, the robots that are not
connected by an edge to any robot of the team, do not actually belong to the team, and therefore, we can study this case by a considering each
connected subgraph independently.
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If in addition to the relative position measurements, some of the robots receive absolute positioning information, then
the measurement matrix has a number of rows (at least one) of the form HiA

= [0 .. 1 .. 0], with the “1”s being at
the columns corresponding to the robots receiving absolute positioning information. In this case C can be written as

C = Q1/2

(
HT R−1H +

∑

k

1
σ2

A

HT
kA

HkA

)
Q1/2 = C + Q1/2

∑

k

1
σ2

Ak

HT
kA

HkA
Q1/2 = C + CA (85)

where the sum is over all robots receiving absolute position measurements, σ2
Ak

are the variances of these measure-
ments, and C is the matrix of the previous case, in which only relative position information were available.

We now prove that C is positive definite, by showing that xT Cx = 0 ⇔ x = 0 . Assume that there exists a vector
x such that

xT Cx = 0 ⇒ xT Cx + xT CAx = 0

Clearly, both terms in the last expression are always nonnegative, since the involved matrices are positive semidefinite.
Thus xT Cx = 0 implies xT Cx = xT CAx = 0. The term xT Cx assumes the zero value only when x = aUN , where
a ∈ R and UN is the basis vector of the nullspace of C. But

a2UT
N

(
Q1/2

∑

k

1
σ2

Ak

HT
kA

HkA
Q1/2

)
UN = a2qtotal

∑

k

1
σ2

Ak

and therefore this quantity is equal to zero only when a = 0. Thus xT Cx = 0 ⇒ x = 0, which implies that when at
least one robot has access to absolute position information, C is positive definite.

D.2 Cooperative Localization in 2D
We can now employ the results of the preceding 1D analysis to the 2D case. Using the result of Eq. (81), we im-
mediately see that when the robots of the a team performing CL in 2D only record relative position measurements,
then rank(Ho) = 2N − 2, while if at least one of the robots has access to absolute position measurements, we have
rank(Ho) = 2N .

Regarding the rank and eigenvectors of Cs, it is straightforward to see that

rank(Ho) = 2N ⇒ rank(Cs) = 2N

since in this case Cs is the product of full-rank matrices. Similarly, we can use Lemma D.1 in the same way as in the
1D case, to show that rank(Cs) = 2N − 2. As a result, the nullspace of Cs is of dimension 2, and is spanned by 2
orthogonal basis vectors. We can find two such vectors by observing that

Cs

(
Q−1/2

s 1N×1 ⊗ I2×2

)
= Q1/2

s HT
o R−1

s HoQ1/2
s

(
Q−1/2

s 1N×1 ⊗ I2×2

)

= Q1/2
s HT

o R−1
s Ho (1N×1 ⊗ I2×2)

= Q1/2
s HT

o R−1
s (H ⊗ I2×2) (1N×1 ⊗ I2×2)

But employing the properties of the Kronecker product yields

(H ⊗ I2×2) (1N×1 ⊗ I2×2) = (H1N×1)⊗ I2×2 = 02N×2

and therefore
Cs

(
Q−1/2

s 1N×1 ⊗ I2×2

)
= 02N×2

The columns of the matrix Q−1/2
s 1N×1 ⊗ I2×2 are

c1 = Q−1/2
s




1
0
1
0
...
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and

c1 = Q−1/2
s




0
1
0
1
...




which are orthogonal (this is easily verified by computing the dot product cT
1 c2). Therefore, a basis for the nullspace

of Cs is given by the vectors

U2N−1 =
c1

||c1|| =
√

qsT
Q−1/2

s




1
0
1
0
...




(86)

and

U2N =
c2

||c2|| =
√

qsT
Q−1/2

s




0
1
0
1
...




(87)

E Matrix Monotonicity of MN

In this appendix we show that the matrix

M = V T X (I2N×2N + h(Cs)X)−1
V (88)

is matrix increasing in the argument X, i.e.,

X′ º X ⇒ M ′ º M (89)

We note that if X is invertible (which is the case of interest), then

M = V T
(
X−1 + h(Cs)

)−1
V (90)

And from the last relation it follows that

X′ º X ⇒
X′−1 ¹ X−1 ⇒

X′−1 + h(Cs) ¹ X−1 + h(Cs) ⇒(
X′−1 + h(Cs)

)−1 º (
X−1 + h(Cs)

)−1 ⇒
V T

(
X′−1 + h(Cs)

)−1
V º V T

(
X−1 + h(Cs)

)−1
V ⇒

M ′ º M

TR-2005-004. r153 23



References
[1] B. Jung and G. S. Sukhatme, “Tracking targets using multiple robots: The effect of environment occlusion,”

Autonomous Robots, vol. 13, no. 3, pp. 191–205, Nov 2002.

[2] R. Vidal, O. Shakernia, H. J. Kim, D. H. Shim, and S. Sastry, “Probabilistic pursuit-evasion games: theory,
implementation, and experimental evaluation,” IEEE Trans. Robot. Automat., vol. 18, no. 5, pp. 662–669, Oct
2002.

[3] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: A survey,” Computer
Networks, vol. 38, no. 4, pp. 393–422, Dec 2002.

[4] Y. Bar-Shalom, Multitarget-multisensor tracking: Principles and techniques. YBS Publishing, 1995.

[5] A. W. Stroupe, “Collaborative execution of exploration and tracking using move value estimation for robot teams
(mvert),” Ph.D. dissertation, Carnegie Mellon University, September 2003.

[6] L. E. Parker, “Distributed algorithms for multi-robot observation of multiple moving targets,” Autonomous
Robots, vol. 12, no. 3, pp. 231–255, 2002.

[7] B. Jung and G. S. Sukhatme, “A generalized region-based approach for multi-target tracking in outdoor envi-
ronments,” in IEEE International Conference on Robotics and Automation, New Orleans, LA, April 26 - May 1
2004, pp. 2189–2195.

[8] M. Mazo, A. Speranzon, K. Johansson, and X. Hu, “Multi-robot tracking of a moving object using directional
sensors,” in IEEE International Conference on Robotics and Automation, New Orleans, LA, April 26 - May 1
2004, pp. 1103–1108.

[9] A. W. Stroupe, R. Ravichandran, and T. Balch, “Value-based action selection for exploration and mapping with
robot teams,” in IEEE International Conference on Robotics and Automation, New Orleans, LA, April 26 - May
1 2004, pp. 4190– 4197.

[10] K. Chang, R. Saha, and Y. Bar-Shalom, “On optimal track-to-track fusion,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 33, no. 4, pp. 1271–1276, Oct 1997.

[11] K. Chang, T. Zhi, and R. Saha, “Performance evaluation of track fusion with information matrix filter,” IEEE
Trans. Aerosp. Electron. Syst., vol. 38, no. 2, pp. 455–466, Apr 2002.

[12] X. Zhang, P. Willett, and Y. Bar-Shalom, “The cramer-rao bound for dynamic target tracking with measurement
origin uncertainty,” in Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, 10-13
Dec 2002, pp. 3428–3433.

[13] A. Bessell, B. Ristic, A. Farina, X. Wang, and M. Arulampalam, “Error performance bounds for tracking a ma-
neuvering target,” in Proceedings of the Sixth International Conference on Information Fusion, Cairns, Australia,
8-11 July 2003, pp. 903–910.

[14] M. Hernandez, A. Marrs, S. Maskell, and M. Orton, “Tracking and fusion for wireless sensor networks,” in
Proceedings of the Fifth International Conference on Information Fusion, Annapolis, MD, 8-11 July 2002, pp.
1023–1029.

[15] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation. John
Wiley & Sons, 2001.

[16] S. I. Roumeliotis and G. A. Bekey, “Distributed multirobot localization,” IEEE Transactions on Robotics and
Automation, vol. 18, no. 5, pp. 781–795, Oct. 2002.

[17] B. Hassibi, “Indefinite metric spaces in estimation, control and adaptive filtering,” Ph.D. dissertation, Stanford
University, August 1996.

[18] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[19] C. D. Meyer, Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics,
2000.

TR-2005-004. r153 24


	Introduction
	Related Work
	Problem Formulation
	Position propagation
	Measurement Model

	CLATT Positioning Accuracy Characterization
	The Riccati Recursion
	 Evaluation of the Upper Bounds with Finite Target Noise Covariance
	Observable system

	Evaluation of the Upper Bounds with Infinite Target Noise Covariance

	Upper Bound Riccati Recursion
	Riccati Recursion for the Upper Bound on the Average Covariance
	Matrix Inversion Lemma
	Rank and Nullspace of the Measurement Matrices
	Cooperative Localization in 1D
	Cooperative Localization in 2D

	Matrix Monotonicity of MN

