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1 Pin-hole Camera Model

The Sun Sensor is represented mathematically by the simple pin-hole camera model, depicted in figure 1. We
attach the sensor coordinate frame S to the aperture, with the z-axis pointing outward along the boresight.
The focal length f describes the distance between its origin and the image plane.

In this model, the vector rg, pointing from the pin-hole to the sun, and a, pointing from the pin-hole to
the image of the sun on the image plane, are obviously collinear.
After normalizing, we can establish the following equality

ro a

(1)

I‘O = —= -
rol |
The attitude information of the Sun Sensor measurement lies in the fact that we know the position of

the sun in a global coordinate frame {G}, whereas we can measure a projection of the unit vector pointing

towards the sun in the Sun Sensor’s coordinate frame {S}.

“Py = “Ps,,, +$C°r (2)
ro = &C(°Py—CPs,,,) =2C g (3)

For now, the position of the spacecraft (and thus the position of the Sun Sensor “Pg,,, ) is assumed to be
known, which in turn implies knowledge of “rg.
The rotation between the global and the sensor frame can be decomposed into two rotational matrices

&C =RCEC (4)

where the transformation % C between sensor frame {S} and spacecraft frame {R} is known and fixed, and
the transformation £C is a function of the attitude quaternion.
The actual measurement z will be a projection of the normalized vector rg, corrupted by zero-mean,
white, Gaussian noise 7
z = I3 CECCr + 1 (5)

where I is the projection matrix.
For the update phase of the Kalman filter, we need to relate the measurement error z to the state vector.

z=12—2=TI};C(GC(q) — GC(9)) - “ro+1 (6)
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¥

Figure 1: The sun sensor, modelled as a pin-hole camera

Using
¢ = 6q®q (7)
&Clg) = &C(0q®q)
= &C(5q) - &C(q) (8)
AC(5g) = (20q3 — V)Isxs — 20q4 - |6q x] + 20qdq”

with dgy = 1, dq small

8C(5q) ~ Is3x3—2[6qx], butdq= %59

RC(dq) ~ I-|66x] )
we can write
z = M}C (30(5@ -1) &C(4) - “ro+n (10)
~ TG (100 %)) £C(@) - Fro +1 )
I3C [§C(§) o x| - 60+ (12)
R 00

= [H%C LgC(Q)GI‘O x | 0] . {f)] +n (13)

We will now look at the geometric interpretation of the measurement vector z and the unit vector Srg,
expressed in the Sun Sensor frame {S}. Henceforth, we will only consider vectors expressed in the sensor
frame and omit the leading superscript © for notational clarity. The vector ro can be parameterized by the
image coordinates u,v and f or the angles o, and o,.

If we write the components of rg and a as

Ty U
o= || az | (14)
Tz _f
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Figure 2: Projection of r and a

we can, using the collinearity of ro and a and the properties of the projected similar triangles (cf. Fig. 2),
establish the relationship

u
Tz _.f " frz ( 5)
Ty v T'y
= s yp=—f2 1
Tz _f ! Tz ( 6)

We can define the angles «, and «, as shown in figure 2 by

tanawz%z—%, tanayz%:—% (17)

yielding
u=—ftano,, v=—ftana, (18)
0y = arctan(—%), ay = arctan(—?) (19)

From equation (1) we can now write the unit vector from the sensor towards the sun as
1 —u 1 Ean Qg (20)
ro = | = ano
Vu? + 0?4 f? f Vtan? o, + tan? a, + 1 1 Y

Note that while o, could be interpreted as the azimuth, a, does not exactly correspond to the elevation
¢ (cf. Fig. 3). However, they are closely related and we can write

cos ¢ sin oy,
ro = |rgl sin ¢ (21)
COS ¢ COS vy,
Obviously, 7= = tana, but * = tanay, = tan ¢/ cos ay.
In accordance with the measurement model (eq. (5)), the actual measurement z will be a projection of
ro on the 2D-plane, for example according to

1 0 0
z = Il-ro+1, H:{O 1 0} (22)
- 1 [tanai] (23)
V(tana,)? + (tanay)? + 1 [tanay 1

— 1 —u

In a next step, we will have to determine the covariance of the measurement noise 7.
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Figure 3: Relationship of ay, oy and elevation ¢

2 Errormodel

For a real measurement, we will have to replace the values of u and v or of a, and o, by their respective
measured values Uy, Vm OF Qzm, Oym. We can assume that they correspond to the real values, corrupted
by zero-mean, white, Gaussian noise. We can furthermore assume, that u,, and v,, are functions of some
internal camera parameters ® which are also error-corrupted.

U (O) = U+ ny, Vp(O)=v+mn, (25)

Qpm = Qg + N,y Qym = Qy + Na, (26)

o] e[

TNy nay

We now have z as non-linear functions of the true vector ro and the noise n,  or n,. By linearizing
around the true vector rg, we can obtain a relationship of the form in eq. (5). We will first show this for
noise in o, and oy.

In the following two sections, we tacitly assume that the linearizations are evaluated at ny,, = n, = 0.
In reality, this will be unrealizable, and the true values for u, v or o, ay, will have to be replaced by their
measured counterparts y,, Uy, OT Gy, and Qym, Tespectively.

2.1 Measurement Noise in terms of Noise in o, and «,

Here, we linearize z around the true o, and ay:

1
z = h(ag,apn,) = {tan amm] (28)
V(tan ag,)? + (tan ayy,)? + 1 [tanaym
N 1 [tan az} IT. -n (29)
V/(tanaz)? + (tanay)? + 1 [tanay o

where o

Ta= on (30)
Comparison to eq. (23) shows

n~T,- n, (31)
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The jacobian I'y, is computed in terms of o, and oy, as

1

Lols 0y) = ((tan a)? + (tan ay,)? +1)3
(tan® oy + 1)(tan® a, + 1)  —(tana, tanay)(tan® oy + 1)
—(tana, tan o) (tan? o, + 1) (tan® ay + 1)(tan? oy, + 1) (32)
e R @
where we introduced the following abbreviations
l=(tan®a, +1), m= (tan’a, +1), n = (tana,tana,) (34)

Using the definitions of a, and ay, (cf. eq. (17)), we can also express I, in terms of image coordinates u
and v:

1 W2+ )W+ %) —(uw)(v? + f?)
Fz 40?4 f2)% [ —wo)@+f2) 0+ )’ + f?)

T.(u,v) =

(35)

Since n,, is assumed to be zero-mean, 7 is also zero-mean, and we can now compute its covariance as

cov(n) = E(nn") (36
= E(T.n,n,'T}) (37
= T, cov(ng)T'Y (38)

In order to determine cov(n,) from an experiment, we measure cov(n) for a test point with a; = oy =0
that should project to the center of the image plane. In reality, due to intrinsic camera errors, the point will
project around the center of the image plane, and we can measure the error and determine its covariance
cov(n). In this case,

To(az =0y =0)=1 (39)
and we can conclude that
cov(na) = cov()la, —a,—0 (10)

Having thus found cov(n,), we can compute the covariance of ) at any other point by applying eq. (38).
If we assume uncorrelated errors with equal variance for o, and «, then

cov(n,) = 0’1 (41)

and
cov(n) = o’T Ik (42)
_ 2 1 m2(I> +n?)  —Imn(l+m) (43)

(Im —n2)3 [=lmn(l+m) *(m? +n?)

where we have again made use of the abbreviations (34).

Due to the linearization in eq. (29), this is an approximation for the actual covariance of the noise.
However, a Monte Carlo simulation, in which we have computed the sample covariance of the true 7 as
determined by the difference between eq. (23) and eq. (28) (cf. Fig. 4), shows good correspondence.

In a next step, we will show that cov(n) is positive definite. Its determinant is computed as

det (cov(n)) = det (0’T,I'Y) (44)
- m(m2(12+n2)l2(m2—|—n2)—(lmn(l+m))2) (45)

0.4
= m(12m2) (46)
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Figure 4: True n for a, = 7/4, oy = pi/6 and o = 0.03, with approximate 3o-bounds computed from
eq. (43)

Now, since
tan?a, >0, tan? ay >0 (47)
= 1>0, m>0, Im—n?=tan’a, +tan’a, +1>0 (48)
we conclude that
trace(cov(n)) = 0, det(cov(n)) >0 (49)
and therefore cov(n) is positive definite
cov(n) > 0 (50)
The eigenvalues of cov(n) are computed as
det(M\I — 0T, TL) =0 (51)
o? ?n?% + 21°m? + m?n?
Ajo = +
< Ay (Im —n?)3 ( 2
\/(l2n2 + 212m?2 + m?2n?)2 — (21°m? — 21mn2)2> (52)
4

From eq. (48) and by inspection, the discriminant is not only ensured to be positive, but also the eigenvalues
can be seen to be both positive, thus confirming positive definiteness.

2.2 Measurement Noise in terms of Noise in v and v

Completely analogous to the above procedure, we can also express z as a non-linear function of the image
coordinates u,v and the internal camera parameters . Similar to eq. (29), we can then linearize around
the true image coordinates and write

1 _
2 = (10,0 muy) - e { “m] (53)
u%n + ’U%’L + f2 “Um
1 —u N
~ —\/m |:—’U:| + Fuﬁv (D : @ + Ilu,v) (54)
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where

]-‘um = P [u " }T (55)
and .
0 U, Um
D= [ 76 ] (56)
Now,

n~ Ty, (D O+ nu,v) (57)

" 1 07 + 1)

. —(v* + uv

I‘u,v - (u2 + ’02 + f2)% |: UV _(U/Q + f2):| (58)

which is not the same as eq. (35) but related to it. Using the definition of n, in eq. (27) and (26), and using
the definition of o, and «, in eq. (19), we can write

oh

Fu,'u = on (59)
oh  0On,
= On. o (60)
—% 0
= Ta(wo) | TR (61)
f2+1)2
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