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1 Pin-hole Camera Model

The Sun Sensor is represented mathematically by the simple pin-hole camera model, depicted in figure 1. We
attach the sensor coordinate frame S to the aperture, with the z-axis pointing outward along the boresight.
The focal length f describes the distance between its origin and the image plane.

In this model, the vector r¯, pointing from the pin-hole to the sun, and a, pointing from the pin-hole to
the image of the sun on the image plane, are obviously collinear.

After normalizing, we can establish the following equality

r0 =
r¯
|r¯| = − a

|a| (1)

The attitude information of the Sun Sensor measurement lies in the fact that we know the position of
the sun in a global coordinate frame {G}, whereas we can measure a projection of the unit vector pointing
towards the sun in the Sun Sensor’s coordinate frame {S}.

GP¯ = GPSOrg + G
S CSr¯ (2)

Sr¯ = S
GC

(
GP¯ − GPSOrg

)
= S

GC Gr¯ (3)

For now, the position of the spacecraft (and thus the position of the Sun Sensor GPSOrg
) is assumed to be

known, which in turn implies knowledge of Gr¯.
The rotation between the global and the sensor frame can be decomposed into two rotational matrices

S
GC = S

RCR
GC (4)

where the transformation S
RC between sensor frame {S} and spacecraft frame {R} is known and fixed, and

the transformation R
GC is a function of the attitude quaternion.

The actual measurement z will be a projection of the normalized vector r0, corrupted by zero-mean,
white, Gaussian noise η

z = ΠS
RCR

GCGr0 + η (5)

where Π is the projection matrix.
For the update phase of the Kalman filter, we need to relate the measurement error z̃ to the state vector.

z̃ = z− z̃ = ΠS
RC

(
R
GC(q)− R

GC(q̂)
) · Gr0 + η (6)
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Figure 1: The sun sensor, modelled as a pin-hole camera

Using

q = δq ⊗ q̂ (7)

R
GC(q) = R

GC(δq ⊗ q̂)
= R

GC(δq) · R
GC(q̂) (8)

R
GC(δq) = (2δq2

4 − 1)I3×3 − 2δq4 · bδq×c+ 2δqδqT

with δq4 ≈ 1, δq small
R
GC(δq) ≈ I3×3 − 2bδq×c, but δq =

1
2
δθ

R
GC(δq) ≈ I− bδθ×c (9)

we can write

z̃ = ΠS
RC

(
R
GC(δq)− I

)
R
GC(q̂) · Gr0 + η (10)

≈ ΠS
RC (−bδθ×c) R

GC(q̂) · Gr0 + η (11)
= ΠS

RC bRGC(q̂)Gr0×c · δθ + η (12)

=
[
ΠS

RC bRGC(q̂)Gr0×c 0
] ·

[
δθ

b̃

]
+ η (13)

We will now look at the geometric interpretation of the measurement vector z and the unit vector Sr0,
expressed in the Sun Sensor frame {S}. Henceforth, we will only consider vectors expressed in the sensor
frame and omit the leading superscript S for notational clarity. The vector r0 can be parameterized by the
image coordinates u,v and f or the angles αx and αy.

If we write the components of r0 and a as

r¯ =




rx

ry

rz


 a =




u
v
−f


 (14)
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Figure 2: Projection of r and a

we can, using the collinearity of r0 and a and the properties of the projected similar triangles (cf. Fig. 2),
establish the relationship

rx

rz
=

u

−f
⇔ u = −f

rx

rz
(15)

ry

rz
=

v

−f
⇔ v = −f

ry

rz
(16)

We can define the angles αx and αy as shown in figure 2 by

tan αx =
rx

rz
= −u

f
, tanαy =

ry

rz
= − v

f
(17)

yielding

u = −f tan αx, v = −f tan αy (18)

αx = arctan(−u

f
), αy = arctan(− v

f
) (19)

From equation (1) we can now write the unit vector from the sensor towards the sun as

r0 =
1√

u2 + v2 + f2



−u
−v
f


 =

1√
tan2 αx + tan2 αy + 1




tan αx

tan αy

1


 (20)

Note that while αx could be interpreted as the azimuth, αy does not exactly correspond to the elevation
φ (cf. Fig. 3). However, they are closely related and we can write

r¯ = |r¯|



cosφ sin αx

sin φ
cosφ cosαx


 (21)

Obviously, rx

rz
= tanαx but ry

rz
= tan αy = tanφ/ cosαx.

In accordance with the measurement model (eq. (5)), the actual measurement z will be a projection of
r0 on the 2D-plane, for example according to

z = Π · r0 + η, Π =
[
1 0 0
0 1 0

]
(22)

=
1√

(tan αx)2 + (tan αy)2 + 1

[
tan αx

tan αy

]
+ η (23)

=
1√

u2 + v2 + f2

[−u
−v

]
+ η (24)

In a next step, we will have to determine the covariance of the measurement noise η.
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Figure 3: Relationship of αx, αy and elevation φ

2 Errormodel

For a real measurement, we will have to replace the values of u and v or of αx and αy by their respective
measured values um, vm or αxm, αym. We can assume that they correspond to the real values, corrupted
by zero-mean, white, Gaussian noise. We can furthermore assume, that um and vm are functions of some
internal camera parameters Θ which are also error-corrupted.

um(Θ) = u + nu, vm(Θ) = v + nv (25)
αxm = αx + nαx , αym = αy + nαy (26)

nu,v =
[
nu

nv

]
, nα =

[
nαx

nαy

]
(27)

We now have z as non-linear functions of the true vector r0 and the noise nu,v or nα. By linearizing
around the true vector r0, we can obtain a relationship of the form in eq. (5). We will first show this for
noise in αx and αy.

In the following two sections, we tacitly assume that the linearizations are evaluated at nu,v = nα = 0.
In reality, this will be unrealizable, and the true values for u, v or αx, αy will have to be replaced by their
measured counterparts um, vm or αxm and αym, respectively.

2.1 Measurement Noise in terms of Noise in αx and αy

Here, we linearize z around the true αx and αy:

z = h (αx, αy,nα) =
1√

(tan αxm)2 + (tan αym)2 + 1

[
tanαxm

tan αym

]
(28)

≈ 1√
(tan αx)2 + (tan αy)2 + 1

[
tan αx

tanαy

]
+ Γα · nα (29)

where
Γα =

∂h
∂nα

(30)

Comparison to eq. (23) shows
η ≈ Γα · nα (31)
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The jacobian Γα is computed in terms of αx and αy as

Γα(αx, αy) =
1

((tanαx)2 + (tan αy)2 + 1)
3
2
·

·
[

(tan2 αy + 1)(tan2 αx + 1) −(tan αx tan αy)(tan2 αy + 1)
−(tan αx tan αy)(tan2 αx + 1) (tan2 αx + 1)(tan2 αy + 1)

]
(32)

=
1

(lm− n2)
3
2

[
lm −nm
−nl lm

]
(33)

where we introduced the following abbreviations

l = (tan2 αx + 1), m = (tan2 αy + 1), n = (tan αx tanαy) (34)

Using the definitions of αx and αy (cf. eq. (17)), we can also express Γα in terms of image coordinates u
and v:

Γα(u, v) =
1

f (u2 + v2 + f2)
3
2

[
(v2 + f2)(u2 + f2) −(uv)(v2 + f2)
−(uv)(u2 + f2) (v2 + f2)(u2 + f2)

]
(35)

Since nα is assumed to be zero-mean, η is also zero-mean, and we can now compute its covariance as

cov(η) = E
(
η ηT

)
(36)

= E
(
Γαnα nα

TΓT
α

)
(37)

= Γα cov(nα)ΓT
α (38)

In order to determine cov(nα) from an experiment, we measure cov(η) for a test point with αx = αy = 0
that should project to the center of the image plane. In reality, due to intrinsic camera errors, the point will
project around the center of the image plane, and we can measure the error and determine its covariance
cov(η). In this case,

Γα(αx = αy = 0) = I (39)

and we can conclude that
cov(nα) = cov(η)|αx=αy=0 (40)

Having thus found cov(nα), we can compute the covariance of η at any other point by applying eq. (38).
If we assume uncorrelated errors with equal variance for αx and αy then

cov(nα) = σ2I (41)

and

cov(η) = σ2ΓαΓT
α (42)

= σ2 1
(lm− n2)3

[
m2(l2 + n2) −lmn(l + m)
−lmn(l + m) l2(m2 + n2)

]
(43)

where we have again made use of the abbreviations (34).
Due to the linearization in eq. (29), this is an approximation for the actual covariance of the noise.

However, a Monte Carlo simulation, in which we have computed the sample covariance of the true η as
determined by the difference between eq. (23) and eq. (28) (cf. Fig. 4), shows good correspondence.

In a next step, we will show that cov(η) is positive definite. Its determinant is computed as

det (cov(η)) = det
(
σ2ΓαΓT

α

)
(44)

=
σ4

(lm− n2)6
(
m2(l2 + n2)l2(m2 + n2)− (lmn(l + m))2

)
(45)

=
σ4

(lm− n2)4
(
l2m2

)
(46)
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Figure 4: True η for αx = π/4, αy = pi/6 and σ = 0.03, with approximate 3σ-bounds computed from
eq. (43)

Now, since

tan2 αx > 0, tan2 αy > 0 (47)
⇒ l > 0, m > 0, lm− n2 = tan2 αx + tan2 αy + 1 > 0 (48)

we conclude that
trace(cov(η)) > 0, det(cov(η)) > 0 (49)

and therefore cov(η) is positive definite
cov(η) Â 0 (50)

The eigenvalues of cov(η) are computed as

det(λI− σ2ΓαΓT
α) = 0 (51)

⇔ λ1/2 =
σ2

(lm− n2)3

(
l2n2 + 2l2m2 + m2n2

2
±

√
(l2n2 + 2l2m2 + m2n2)2 − (2l2m2 − 2lmn2)2

4

)
(52)

From eq. (48) and by inspection, the discriminant is not only ensured to be positive, but also the eigenvalues
can be seen to be both positive, thus confirming positive definiteness.

2.2 Measurement Noise in terms of Noise in u and v

Completely analogous to the above procedure, we can also express z as a non-linear function of the image
coordinates u, v and the internal camera parameters Θ. Similar to eq. (29), we can then linearize around
the true image coordinates and write

z = h (u, v,Θ,nu,v) =
1√

u2
m + v2

m + f2

[−um

−vm

]
(53)

≈ 1√
u2 + v2 + f2

[−u
−v

]
+ Γu,v

(
D · Θ̃ + nu,v

)
(54)
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where
Γu,v =

∂h

∂
[
um, vm

]T (55)

and

D =
∂

[
um, vm

]T
∂Θ

(56)

Now,
η ≈ Γu,v

(
D · Θ̃ + nu,v

)
(57)

and

Γu,v =
1

(u2 + v2 + f2)
3
2

[−(v2 + f2) uv
uv −(u2 + f2)

]
(58)

which is not the same as eq. (35) but related to it. Using the definition of nα in eq. (27) and (26), and using
the definition of αx and αy in eq. (19), we can write

Γu,v =
∂h

∂nu,v
(59)

=
∂h
∂nα

· ∂nα

∂nu,v
(60)

= Γα(u, v) ·
[
− f

f2+u2 0
0 − f

f2+v2

]
(61)

TR-2005-001 7


