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Abstract— In this paper, a sliding-window two-camera vision-
aided inertial navigation system (VINS) is presented in the
square-root inverse domain. The performance of the system
is assessed for the cases where feature matches across the
two-camera images are processed with or without any stereo
constraints (i.e., stereo vs. binocular). To support the com-
parison results, a theoretical analysis on the information gain
when transitioning from binocular to stereo is also presented.
Additionally, the advantage of using a two-camera (both stereo
and binocular) system over a monocular VINS is assessed.
Furthermore, the impact on the achieved accuracy of different
image-processing frontends and estimator design choices is
quantified. Finally, a thorough evaluation of the algorithm’s
processing requirements, which runs in real-time on a mobile
processor, as well as its achieved accuracy as compared to
alternative approaches is provided, for various scenes and
motion profiles.

I. INTRODUCTION AND RELATED WORK

Combining measurements from an inertial measurement
unit (IMU) with visual observations from a camera, known
as a VINS, is a popular means for navigating within GPS-
denied areas (e.g., underground, in space, or indoors). With
the growing availability of such sensors in mobile devices
(e.g., [1]), the research focus in VINS is gradually turning
towards finding efficient, real-time solutions on resource-
constrained devices. Moreover, with the recent improvements
in mobile CPUs and GPUs (e.g., NVIDIA’s TK1 [2]), the
interest in more robust multi-camera VINS is also increasing.

Most existing VINS approaches can be classified into
loosely-coupled and tightly-coupled systems. In loosely-
coupled systems, either the integrated IMU data are incorpo-
rated as independent measurements into the (stereo) vision
optimization (e.g., [3]), or vision-only pose estimates are
used to update an extended Kalman filter (EKF) performing
IMU propagation (e.g., [4]). In contrast, tightly-coupled
approaches jointly optimize over all sensor measurements
(e.g., [5], [6], [7]) which results in higher accuracy.

The first step towards a multi-camera VINS is to em-
ploy two cameras. Incorporating, however, a second camera
to a localization system is usually computationally costly.
Thus, although there exist many implementations of loosely-
coupled stereo systems (e.g., [3], [8]), or approaches that
use stereo only for feature initialization (e.g., [9]), only
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few works address the more computationally demanding
tightly-coupled stereo VINS. To the best of our knowledge,
Leutenegger et al. [7] and Manderson et al. [10] present the
only tightly-coupled stereo VINS, which operate in real-
time but only on desktop CPUs. Manderson et al. [10]
employ an extension of PTAM [11] where the tracking and
mapping pipelines are decoupled, and hence is inconsistent.1

On the other hand, Leutenegger et al. [7] propose a consistent
keyframe-based stereo simultaneous localization and map-
ping (SLAM) algorithm that performs nonlinear optimization
over both visual and inertial cost terms. In order to maintain
the sparsity of the system, their approach employs the follow-
ing approximation: Instead of marginalizing the landmarks
associated with the oldest pose in the temporal window,
these are dropped from the system (fully dropped for non-
keyframes and partially dropped for keyframes), rendering
their approach sub-optimal.

In contrast, our method builds on and extends the work
of [6], where a monocular VINS is presented in the inverse
square-root form (termed as SR-ISWF). In this paper, we
present both stereo and duo (binocular i.e., two independent
cameras, without any stereo constrains between them) VINS,
adopting the approach of [6]. We experimentally show the
benefit of a stereo system over mono and duo systems,
especially in challenging environments and motion profiles.
We also provide a theoretical analysis on the performance
gain in stereo, as compared to duo, in terms of the Cholesky
factor update. Additionally, we present the impact of different
image-processing frontends on VINS and show that our
stereo system operates in real-time on mobile processors and
achieves high accuracy, even with a low-cost commercial-
grade IMU, as opposed to [7] that employs an industrial-
grade IMU. Our main contributions are:
• We present the first tightly-coupled stereo VINS that

operates in real-time on mobile processors.
• We present a detailed comparison between mono, duo,

and stereo VINS under different scenes and motion
profiles, and provide a theoretical explanation of the
information gain when transitioning from duo to stereo.

• We assess the impact of different image-processing
frontends on the estimation accuracy of VINS, and per-
form a sensitivity analysis of different frontends, with
respect to the changes in feature track length. Moreover,
we provide a detailed analysis of how different design

1As defined in [12], a state estimator is consistent if the estimation
errors are zero-mean and have covariance matrix smaller or equal to the
one calculated by the filter. Since PTAM considers parts of the state vector
to be perfectly known during its tracking or mapping phases, the resulting
Hessian does not reflect the information and hence uncertainty of the system.



Fig. 1. Stereo camera-IMU setup, where {I}, {CL}, {CR}, and {G}
are the IMU, left camera, right camera, and global frames, respectively,
(IqCL , IpCL ) and (IqCR , IpCR ) are the corresponding left and right
IMU-camera extrinsic parameters, (CLqCR ,CLpCR ) are the extrinsic
parameters between the left and right cameras, and fSj , fLj , and fRj are
the stereo and mono, left and right, features.

choices (e.g., optimization window-size and extrinsics
representation) affect the VINS performance.

• We compare our stereo-VINS algorithm against two
state-of-the-art systems: i) OKVIS [13] (an open-source
implementation of [7]) and ii) ORB-SLAM2 [14] (a
vision-only stereo SLAM system with loop-closures);
and demonstrate its superior performance.

The rest of this paper is structured as follows: In Sec. II,
we briefly overview the key components of the proposed
VINS, while Sec. III describes the image-processing
frontend. Sec. IV presents an overview of the estimation
algorithm, highlighting the key differences between the
duo and stereo systems. A theoretical explanation of the
information gain in stereo, as compared to duo, is presented
in Sec. V. Finally, experimental results over several datasets
are shown in Sec. VI, while Sec. VII concludes the paper.

II. VISION-AIDED INERTIAL NAVIGATION SYSTEM

The key components of the proposed VINS (see Fig. 1)
are briefly described hereafter.

A. System State
At each time step k, the system maintains the following

state vector:

x′k =
[
xTS xTk

]T
(1)

with xk =
[
xTCk−M+1

· · · xTCk
xTP xTEk

]T
(2)

where xS is the state vector of the current SLAM features be-
ing estimated and xk is the state vector comprising all other

current states. Here xS =
[
C

i
mpTf1 . . . C

i
mpTfn

]T
, with

C
i
mpfj , for j = 1, . . . , n, denoting the position of the point

feature fj in its first observing camera frame {Cim}, where
for the jth feature, m is the time step of its first observing
camera frame and i = 0, 1, is its first observing camera index
(0 = left, 1 = right). For stereo features, if both cameras start
observing the feature from the same time step, the left camera
is assigned to be the first observing camera. Next, xCp

, for
p = k − M + 1, . . . , k, represents the state vector of the
cloned IMU poses at time step p, where M is the size of the
sliding-window. We refer to the same stochastic cloning as in
the MSCKF [5], for maintaining past IMU poses in a sliding-
window estimator. Each cloned pose state is defined as

xCp =
[
IpqTG

GpTIp tdp
]T

(3)

where IpqG is the quaternion representing the orientation
of the global frame {G} in the IMU’s frame of reference
{Ip}, GpIp is the position of {Ip} in {G}, and tdp is the
IMU-camera time offset (similar to the definition in [15]), at
time step p. Next, the parameter state vector is defined as

xP =
[
IqTCL

IpTCL

IqTCR

IpTCR

]T
(4)

where IqCL
and IqCR

are the quaternion representation of
the orientations and IpCL

and IpCR
are the positions, of the

left and right camera frames, {CL} and {CR}, in the IMU’s
frame of reference {I}. An alternative representation of xP
is also considered, which consists of the left camera-IMU
extrinsic and the left-right camera-camera extrinsic (CLqCR

,
CLpCR

).

xP =
[
IqTCL

IpTCL

CLqTCR

CLpTCR

]T
(5)

In Sec. VI-G, we present a detailed comparison of these two
representations, which supports selecting the later. Finally,
xEk

stores the current IMU biases and speed.

xEk
=
[
bTgk

GvTIk bTak
]T

(6)

where bgk and bak correspond to the gyroscope and
accelerometer biases, respectively, and GvIk

is the velocity
of {Ik} in {G}, at time step k.

The error state x̃ is defined as the difference between the
true state x and the state estimate x̂ employed for lineariza-
tion (i.e., x̃ = x − x̂), while for the quaternion q a multi-
plicative error model q̃ = q ⊗ q̂−1 '

[
1
2δθ

T 1
]T

is used,
where δθ is a minimal representation of the attitude error.

B. Inertial Measurement Equations and Cost Terms

Given inertial measurements uk,k+1 =
[
ωTmk

aTmk

]T
,

where ωmk
and amk

are gyroscope and accelerometer
measurements, respectively, analytical integration of the
continuous-time system equations (see [6]) within the time
interval

[
tk, tk+1

]
is used to determine the discrete-time

system equations,

xIk+1
= f(xIk , uk,k+1 −wk,k+1) (7)

where xIk ,
[
xTCk

xTEk

]T
, and wk,k+1 is the discrete-

time zero-mean white Gaussian noise affecting the IMU
measurements with covariance Qk. Linearizing (7), around
the state estimates x̂Ik and x̂Ik+1

, results in the cost term:

Cu(x̃Ik , x̃Ik+1
) = ||

[
Φk+1,k −I

] [ x̃Ik
x̃Ik+1

]
− (x̂Ik+1

− f(x̂Ik ,uk,k+1))||2Q′k (8)

where Q′k = Gk+1,kQkG
T
k+1,k, with Φk+1,k and Gk+1,k

being the corresponding IMU state and noise Jacobians.

C. Visual Measurement Equations and Cost Terms

Point features extracted from consecutive images are used
as visual measurements to be processed by the estimator. The
measurement model for the jth feature in the ith camera is

zi,jk = π(C
i
k+tpfj ) + ni,jk (9)

where π(.) is the camera projection model (including distor-
tion), and C

i
k+tpfj is the feature position expressed in the

ith (i = 0 : left, 1 : right) camera’s frame of reference at the



exact image-acquisition time instant k+t, ni,jk is zero-mean,
white Gaussian noise with covariance σ2I2. Linearizing (9)
around the current state estimates yields:

z̃i,jk = Hi,j
x,k x̃k + Hi,j

f,k
Gp̃fj + ni,jk (10)

where Hi,j
x,k and Hi,j

f,k are the corresponding Jacobians
evaluated at the state estimate x̂k. For a monocular feature,
stacking together all Nj = Ni,j observations to it yields:

z̃j = Hj
xx̃k + Hj

f
Gp̃fj + nj (11)

Then, the measurements zj contribute a linearized cost term:

Czj (x̃k,Gp̃fj ) = ||Hj
xx̃k + Hj

f
Gp̃fj − z̃j ||2σ2I2Nj

(12)

For a stereo feature, however, two sets of observations
N0,j and N1,j come from each camera. Stacking together all
such Nj = N0,j +N1,j observations to this feature yields:

z̃j =

[
z̃0,j

z̃1,j

]
=

[
H0,j
x

H1,j
x

]
x̃k +

[
H0,j
f

H1,j
f

]
Gp̃fj +

[
n0,j

n1,j

]
(13)

The corresponding linearized cost term becomes:

Czj (x̃k,
Gp̃fj ) = ||H

j
xx̃k +Hj

f
Gp̃fj − z̃j ||2σ2I2Nj

(14)

= ||
[
H0,j
x

H1,j
x

]
x̃k +

[
H0,j
f

H1,j
f

]
Gp̃fj −

[
z̃0,j

z̃1,j

]
||2σ2I2Nj

(15)

=

1∑
i=0

||Hi,j
x x̃k +Hi,j

f
Gp̃fj − z̃i,j ||2σ2I2Ni,j

(16)

D. Visual-Information Management
Three types of VINS systems are supported in our setup:

i) mono, ii) duo, and iii) stereo. Where the mono system uses
observations only from the left camera, the duo system pro-
cesses measurements from both cameras independently, and
the stereo system fuses observations from both cameras with
a constraint between the commonly observed features. In
all systems, we maintain two types of visual measurements:
i) SLAM features and ii) MSCKF features, as in [5], [6],
so as to provide high estimation accuracy while remaining
computationally efficient. SLAM features are those that are
added in the state vector (2) and updated across time. On the
other hand, MSCKF features are those that are processed
as in the MSC-KF approach [5], where the feature states
are marginalized from the measurement equation (11) to
generate constraints between poses. Note that, a similar
approach to [6] is followed for classifying and maintaining
the observed features into these two categories.

III. IMAGE-PROCESSING FRONTEND

The proposed system extracts point features on consecu-
tive images and tracks them across time. For each camera,
feature extraction, tracking, and visual database manage-
ment are performed independently. Two main categories
of image processing frontends are explored: i) FAST [16]
corner extraction and tracking using Kanade-Lucas-Tomasi
(KLT) [17]-based optical flow and ii) difference of Gaussians
(DOG) feature extraction with FREAK [18] descriptors and
tracking using frame-to-frame matching. Henceforth, we will
refer to them as KLT and FREAK frontends.

For both frontends, the feature tracking is aided with gyro-
prediction (the frame-to-frame rotation estimate from the

integration of the gyroscope measurements) and outliers are
rejected using the 2-pt RANSAC [19]. After obtaining both
left and right monocular feature tracks, stereo matching is
performed. Lastly, another outlier rejection step is applied
to the stereo matches and the remaining visual tracks are
triangulated and prepared for the filter to process.

A. Stereo Matching

In our system, stereo matching is performed directly on
the fisheye images. Where, the searched region is restricted
on the curve corresponding to the epipolar line. To avoid
exhaustive search along the whole epipolar line, it is assumed
that the inverse depth of the features remains within an
interval [0, ρmax]. Also, to account for the inaccuracy of the
stereo extrinsic calibration, the search region is expanded by
2 pixels on both sides, perpendicular to the epipolar line.

For the two different feature extraction pipelines under
consideration, different stereo matching strategies are em-
ployed. For the FREAK pipeline, the features are already
associated with descriptors and descriptor-matching is used
to find stereo correspondences. For the KLT pipeline, how-
ever, sum of squared difference (SSD)-based patch matching
is employed. A line patch consisting of five equidistant points
on the epipolar line is used for matching, as in [20].

B. Outlier Rejection

Our system employs a cascade of outlier rejection steps for
the stereo features. Besides the epipolar constraint check in
stereo matching (Sec. III-A), a re-projection error test is per-
formed on the stereo matches. Then, the depths of the stereo
features are estimated using 2-view stereo triangulation and
matches are rejected if the estimated depth falls outside an
interval, [dmin, dmax]. Additionally, a fast 1-pt RANSAC is
employed to remove the remaining outlier matches.

Specifically, among the stereo features observed at both
time steps k − 1 and k, one feature is randomly picked
and (17) is used to estimate the translation, IkpIk−1

, between
the corresponding IMU frames:

IkpIk−1
= IpCi + ICCi

C
i
kpf

− IkCIk−1
(ICCi

C
i
k−1pf +

IpCi) (17)

where C
i
kpf and C

i
k−1pf are feature positions with respect

to the ith camera, at time steps k and k − 1, respectively,
ICCi and IpCi are the IMU-camera extrinsics for the ith

camera, and IkCIk−1
is the rotation between IMU frames at

time steps k and k − 1, which is reliably known from the
integration of the gyroscope measurements. If both cameras
[i.e., (17) for i = 0 and i = 1] generate similar estimates of
IkpIk−1

, the mean estimate is used to check how many of
the stereo features satisfy (17). This process is repeated until
enough inliers are found or maximum iterations are reached.
Next, the features are subjected to two more layers of outlier
rejection in triangulation and filtering (Sec. III-C and IV-B).

C. Triangulation and Preparation of Visual Tracks

In the stereo system, the visual feature tracks are classified
into two categories: monocular and stereo. If within the
current optimization window, any two left-right feature tracks



are linked by at-least 2 stereo matches, all measurements
from the two tracks are combined into a single feature track,
classified as stereo track. If any left track matches multiple
right tracks, the right track with the maximum number of
matches is chosen. The rest of the tracks from both cameras
are then classified as monocular tracks. After classification,
the features are triangulated using all observations to them
from both cameras. During triangulation, the individual and
mean re-projection errors of all observations in a track
are checked. If the errors exceed a threshold, the track is
rejected as an outlier. Additionally, for the stereo tracks,
if the combined mean re-projection error is larger than
the corresponding left-right track errors, the stereo track
association is considered erroneous and the associated left-
right tracks are re-classified and processed as monocular.

IV. ESTIMATION ALGORITHM

In this section, the main steps of the SR-ISWF algorithm
are briefly described. Though the proposed system supports
both SLAM and MSCKF features, for brevity and clarity of
presentation we focus only on the MSCKF features.

At each time step k, the objective is to minimize the cost
term C⊕k that contains all the information available so far:

C⊕k = Ck−1 + Cu + CZM
(18)

where Cu [see (8)] represents the cost term arising from the
IMU measurement uk−1,k, and CZM

=
∑NM

j=1 Czj [see (12)]
from the visual measurements to the NM MSCKF features.
In the mono system, CZM

consists of the feature observations
from the left camera only, hence equals CZM0

. In the duo
system, however, it incorporates observations from both
cameras, i.e., CZM

= CZM0
+ CZM1

. Lastly, for the stereo
system, CZM

comprises of monocular observations from each
camera, as well as, stereo observations of features viewed by
both cameras, i.e., CZM

= CZM0
+ CZM1

+ CZMs
, where CZMs

is the cost term due to the Ns stereo observations, that is

CZMs
=

1∑
i=0

Ns∑
j=1

Czi,j (fi,j) s.t. f0,j ≡ 0T1 ⊕ f1,j (19)

where 0T1 is the transformation between the two camera
frames and fi,j is the jth feature observed by the ith camera.
All the prior information obtained from the previous time
step is contained in

Ck−1(x̃k−1) = ‖Rk−1x̃k−1 − rk−1‖2 (20)

where Rk−1 and rk−1 are the prior information factor matrix
and residual vector, respectively, and x̃k−1 , xk−1 − x̂k−1
is the error state from time step k − 1 [see (2)].

A. Propagation

In the sliding-window, a new pose state xIk [see (7)] is
appended to the current state vector at each time step k:

x	k =
[
xTk−1 xTIk

]T
(21)

using the IMU measurement uk−1,k. Hence, as in [6], the
cost term, which initially comprised only Ck−1, becomes

C	k (x̃
	
k ) = Ck−1(x̃k−1) + Cu(x̃Ik−1

, x̃Ik)

= ‖R	k x̃	k − r	k ‖
2 (22)

B. Marginalization and Covariance Factor Recovery
To maintain constant computational complexity, at time

step k, the SR-ISWF marginalizes the oldest clone x̃Ck−M
,

and the extra IMU states x̃Ek−1
from the previous time step.

For marginalization, the same strategy as in [6] is used with
the resultant cost term after marginalization being:

CMk (x̃k) = min
x̃M
k

C	k (x̃
M
k , x̃k) =

∥∥RR
k x̃k − rRk

∥∥2 (23)

where x̃Mk are the marginalized states, x̃k are the remaining
states after marginalization [see (2)], and RR

k is upper-
triangular. Next, as in [6], the covariance factor is recovered
and used in Mahalanobis-distance-test-based outlier rejec-
tion.

C. Update
During the update step the pose-constraint information

from the MSCKF feature measurements are incorporated.
1) Mono System Update: Following [6], first an orthonor-

mal factorization is performed on the cost term in (12), to
split it into two terms: i) Cz1j , containing information about
the feature’s position and ii) Cz2j , containing information
about the poses which observed the feature, i.e.,

Czj (x̃k,Gp̃fj ) = ||F
j
1x̃k + Rj

f
Gp̃fj − z̃j1||2σ2I3

(24)

+ ||Fj2x̃k − z̃j2||2σ2I2Nj−3
(25)

= Cz1j (x̃k,
Gp̃fj ) + Cz2j (x̃k) (26)

where Fjl , Rj
f , and z̃jl (l = 1, 2) are the corresponding

Jacobians and residuals. Next, the feature states are
marginalized by dropping Cz1j while the pose-constraints
from the Cz2j terms are incorporated in the cost term CMk . To
do so, the Jacobians are stacked together and, as in [6], a thin-
QR factorization [21] is performed, resulting in the cost term:

C⊕k (x̃k) = C
M
k (x̃k) + CZM

(x̃k) = ‖R⊕k x̃k − r⊕k ‖
2 (27)

where CZM
(x̃k) =

∑NM

j=1 Cz2j (x̃k), with NM being the
number of MSCKF features. Finally, (27) is minimized with
respect to the error state vector and the solution for x̃k is
used to update the state.

min
x̃k

C⊕k (x̃k) = min
x̃k

‖R⊕k x̃k − r⊕k ‖
2 (28)

x̂⊕k = x̂k + x̃k (29)

2) Duo System Update: As compared to the mono system,
the only difference here is that, the cost term CZM

comprises
two sets of measurements, one from each camera:

CZM
(x̃k) =

1∑
i=0

NMi∑
j=1

Cz2i,j (x̃k) (30)

where NMi
is the number of features for the ith camera.

3) Stereo System Update: For the stereo system, there are
two types of visual measurements: monocular and stereo.
The monocular measurements can come from either camera
and are processed independently in the same way as in
duo. For the stereo measurements in (13), however, the cost
terms (14) come from both cameras. The combined Jacobians
Hj
f are then factorized similarly as in mono (26). In our

optimized implementation of the factorization, we stack



together the measurement Jacobians in (15) and maintain the
block-diagonal shape of Hj

x, by interleaving the Jacobians
from each camera in the clone order that they were observed.

V. INFORMATION GAIN FROM DUO TO STEREO

For features that are observed from both cameras, the
transition from duo to stereo systems is due to the addition of
the constraint in (19), i.e., that the two sets of observations
correspond to the same feature. Such additional constraint
results in information gain. To show that, we start with the
cost term in (14) and apply a two-step factorization. Similar
to mono, the two Hi,j

f terms in (16) are first factorized:

Czj (x̃k,Gp̃fj ) =

1∑
i=0

||Fi,j1 x̃k + Ri,j
f
Gp̃fj − z̃i,j1 ||2σ2I3

+

1∑
i=0

||Fi,j2 x̃k − z̃i,j2 ||2σ2I2Ni,j−3

= Cz1j (x̃k,
Gp̃fj ) + Cz2j (x̃k) (31)

where Fi,jl , Ri,j
f , and z̃i,jl (l = 1, 2) are the corresponding

Jacobians and residuals. In what follows, the two Jacobians
Ri,j
f are then combined into Jjf [see (32)] and another

orthonormal factorization is performed on it to absorb the
remaining information regarding the poses from the stereo
measurements. To do so, a square orthonormal matrix Qj ,
partitioned as Qj =

[
Pj Vj

]
is considered, where the 3

columns of Pj span the column space of Jjf , while the 3
columns of Vj , are its left nullspace.

Cz1j (x̃k,
Gp̃fj ) = ||

[
F0,j

1

F1,j
1

]
x̃k +

[
R0,j
f

R1,j
f

]
Gp̃fj −

[
z̃0,j1

z̃1,j1

]
||2σ2I6

= ||Jjxx̃k + Jjf
Gp̃fj − z̃j1||

2
σ2I6

(32)

= ||QT
j J

j
xx̃k +QT

j J
j
f
Gp̃fj −QT

j z̃
j
1||

2
σ2I6

= ||PT
j J

j
xx̃k +PT

j J
j
f
Gp̃fj −PT

j z̃
j
1||

2
σ2I3

+ ||VT
j J

j
xx̃k −VT

j z̃
j
1||

2
σ2I3

= ||Fj3x̃k +Rj
f
Gp̃fj − z̃j3||

2
σ2I3

+ ||Fj4x̃k − z̃j4||
2
σ2I3

(33)

= Cz3j (x̃k,
Gp̃fj ) + Cz4j (x̃k) (34)

with Fj3 , PT
j J

j
x Fj4 , VT

j J
j
x Rj

f , PT
j J

j
f

z̃j3 , PT
j z̃

j
1 z̃j4 , VT

j z̃
j
1 (35)

Hence, (31) becomes:
Czj (x̃k,Gp̃fj ) = Cz3j (x̃k,

Gp̃fj ) + Cz4j (x̃k) + Cz2j (x̃k)
Here, Cz2j and Cz3j are similar to the cost terms in (26) and

Cz4j is the cost term that conveys the extra information factor
Fj4 obtained from the stereo features, as compared to duo.

It is well known that any monocular system has seven
unobservable dof (3 for global translation, 3 for global
orientation, and 1 for scale), while the same is true for the
duo system. The stereo system, however, directly provides
metric information and hence makes the scale observable.
As evident, the additional factor Fj4 is the one providing the
scale information.2

2A formal proof of the directions along which Fj4 provides information
is omitted due to lack of space.

VI. EXPERIMENTAL RESULTS

In this section, a brief description of the experimental
setup is provided, followed by a performance assessment
of the mono, duo, and stereo VINS, using different image-
processing frontends and design choices. The capability of
the proposed stereo system for real-time operation on a
commercial-grade mobile processor is also assessed. Lastly,
comparisons to alternative approaches are provided.

A. Experimental Setup

For our experiments, the wide stereo setup of Fig. 2
was used. The stereo-rig is equipped with two Chameleon-2
camera sensors, with PT-02118BMP lenses. The cameras are
global shutter and the lenses are fixed focal fisheye lenses
with 165◦ field of view (FOV). The baseline between the
cameras is 26 cm and they capture 640×480 images at 15 Hz.
A commercial grade Invensense MPU-9250 IMU is used,
which reports inertial measurements at 100 Hz. The cameras
are triggered simultaneously by the IMU. The full pipeline
runs real-time on the NVIDIA Jetson TK1 [2] board, which
is equipped with a Tegra TK1 mobile processor, featuring a
Kepler GPU and a quad-core ARM Cortex-A15 CPU.

B. Datasets and Ground-truth Estimation

In what follows, we first present our evaluation results on
7 of our indoor datasets.3 To assess the effect of various
conditions on certain pipelines, these were recorded under
different lighting conditions, motion profiles, and scenes. The
datasets are classified into three categories:
• Regular (Datasets 1-3): The purpose of these datasets

is to assess how much drift the filter accumulates in
a regular scene over a long period of time. These are
long (0.8 km, 1.1 km, and 1.1 km), multi-floor, mostly
texture-rich, and well-lit, with few relatively darker and
feature-deprived stairways.

• Textureless (Datasets 4-5): The purpose of these
datasets is to assess the robustness of different image-
processing frontends in challenging scenes. These are
also long (1.2 km and 1.1 km), single floor, and com-
posed of dark, long, textureless corridors.

• Fast-motion (Datasets 6-7): The purpose of these is to
assess the robustness of the image-processing frontends
to fast motions. These are short (105.4 m and 88.4 m
long), but contain very fast and arbitrary motions.

Furthermore, we present results for the EuRoC MAV
datasets [22], which are classified into the i) Machine Hall
(MH) and ii) VICON room datasets.

As a measure of positioning accuracy, the percentage of
root mean square error (RMSE) over the distance travelled is
used. For ground-truth, the batch least squares (BLS) solution
of [23] with all visual (from both cameras) and inertial mea-
surements is used. The stereo BLS implementation performs
loop-closures and hence accumulates negligible drift over
long trajectories (RMSE is around 0.05%).

3The datasets are available at this link:
http://mars.cs.umn.edu/research/stereo_vins.php



Fig. 2. Experimental setup.

Fig. 3. Comparison between mono, duo, and stereo VINS using both FAST-
KLT (F-K) and FREAK-to-FREAK (F-F) pipelines, for both our datasets
and MAV datasets (M = mono, D = duo, S = stereo).

C. Comparison Between Mono, Duo, and Stereo VINS

The goal of this experiment is to assess the accuracy
of the proposed stereo system, as well as to compare it
against its monocular and binocular counterparts. For a fair
comparison, the same feature budget (the number of features
processed in each update) was used in both mono and stereo
systems (20 SLAM features and 50 MSCKF features). For
the duo system, the same features in the stereo were used,
while dropping the stereo constraints. The sliding-window
size, M , was set to 5. The comparison results for both
image-processing frontends are presented in Fig. 3 as a box-
and-whisker plot. Fig. 3 indicates that from mono to duo
the estimation accuracy usually increases, since additional
measurements from a second camera are included. The duo
setup, however, does not always guarantee an improvement in
performance, as is in the case of the FREAK pipeline in the
low-texture datasets. On the other hand, from duo to stereo a
significant performance gain is always observed, confirming
the findings of Sec. V.

D. Impact of Different Image-processing Frontends

In the proposed system, two categories of image-
processing frontends, KLT-based and FREAK-matching-
based, are considered. The key benefit of the KLT pipeline
is that it extracts better geometric information by providing
longer feature tracks. Such tracks, however, could drift over
time, causing significant performance degradation, especially
in the case of stereo. The FREAK pipeline, on the other hand,
usually generates drift-free tracks since FREAK DOGs are
relatively well localized and have distinguishable descriptors
associated with them. But such features suffer from shorter
track length, as the DOG extrema have low repeatability in
consecutive image frames. In this section, we will assess
which one of these factors (having longer vs. drift-free
tracks) affects the estimation accuracy more.

Fig. 4. Sensitivity of different pipelines (M-F = mono FREAK, S-F =
stereo FREAK, M-K = mono KLT, S-K = stereo KLT) to changes in the
maximum track length.

We start by noting that, although in the regular datasets
KLT achieves very long feature tracks (8.1 vs. 3.7 for
FREAK), the track length drops close to the FREAK tracks
for the textureless and fast-motion datasets (3.8 vs. 3.3).
On the other hand, the FREAK-matching pipeline uses
descriptors that are more invariant to scene changes, hence
maintaining almost a constant average track length over all
types of datasets. Also, being a matching-based approach,
large displacement of features due to fast-motion do not hurt
the tracking performance as much, where KLT struggles to
capture such large displacements. Consequently, as shown
in Fig. 3, both mono and stereo systems benefit significantly
by using the FREAK pipeline. For the duo pipeline, the
FREAK frontend either performs better (for fast motion)
or comparable to KLT. These results suggest that, although
track length is an important factor for acquiring better
geometric information, having drift-free tracks (though
shorter) is even more important.

E. Sensitivity with respect to Maximum Track Length

To improve our understanding of how track length af-
fects the estimation performance, a sensitivity analysis is
performed on both monocular and stereo VINS systems
with respect to changes in the maximum track-length. We
compared both KLT and FREAK-based feature trackers,
while varying the maximum allowed track length from 4 to
10 (at 5 Hz cloning). The track length sensitivity is defined
as the maximum variation in RMSE due to the variation
in the maximum track length. The results shown in Fig. 4
indicate that, compared to the FREAK frontend, KLT has
a higher sensitivity to changes in track length, justifying
the worse performance of KLT in challenging datasets (see
Fig. 3). Also, as compared to stereo, the mono system
shows more sensitivity towards changes in track length since
for monocular features the triangulation baseline depends
heavily on the track length, where, stereo features typically
have sufficient baseline irrespective of the track length.

F. Impact of Sliding-Window Size

In this experiment, the influence of the sliding-window
size, M , on the estimation accuracy is assessed. The error
distribution, while varying M (5, 7, and 10), is presented
in Fig. 5 for different pipelines and datasets. In terms of
processing time, M = 5 is around 1.5 (than M = 7) to
2.1 (than M = 10) times faster. As expected, in the regular



Fig. 5. Performance comparison of different pipelines by varying the
number of clones in the sliding-window, M.

datasets with the KLT frontend, the error drops as the sliding-
window size increases, for both mono and stereo systems.
Interestingly, the opposite happens for the FREAK pipeline
and also for the KLT pipeline in the textureless and the fast-
motion datasets. In such cases the average track length is
close to or less than 4 clones, hence, even if the window size
is increased, on average only few features have long enough
tracks to benefit from the longer optimization window. Also,
by doubling the optimization window size (from 5 to 10), the
condition number in such cases usually increases by a factor
of 1.4, which might contribute to this loss of performance.

G. Impact of Extrinsic Representations
As stated in Sec. II-A, the sensors’ extrinsics can be rep-

resented in two ways [see (4) and (5)]. The most commonly
used option is (4), for its ease of implementation (especially
in multi-camera systems). By employing this representation,
however, the two IMU-camera extrinsics are optimized inde-
pendently, without posing any constraint on the camera-to-
camera extrinsics. On the other hand, in (5) the camera-to-
camera extrinsics are explicitly represented, allowing them
to have a strong initial prior (for stereo, the camera-to-
camera extrinsics can be estimated offline very accurately)
so that they do not vary rapidly during optimization.4 Fig. 6
compares the performance of the stereo and duo systems
using the FREAK frontend with both representations. As
evident, (5) always outperforms (4), especially in the stereo
system and regular-motion datasets.

H. Computational Performance
Table I compares the processing times in milliseconds

(ms) of the mono, duo, and stereo systems for both KLT
(NEON optimized) and FREAK (both NEON and CUDA
optimized) frontends, running on NVIDIA Jetson TK1. For

4Among the 6 dof of the IMU-camera extrinsic calibration, the 3 dof
of position are typically the ones less accurately estimated since acquiring
information for them requires very fast rotations that cause image blur.

Fig. 6. Impact of the two representations of the right camera extrinsic, with
respect to i) IMU (IMU-Camera) and ii) left camera (Camera-to-Camera),
for (a) stereo and (b) duo systems.

TABLE I
COMPARISON: TIMING RESULTS PER FILTER UPDATE (MS)

Pipelines Filter Update Total Pipeline
Mono-KLT 12.6362 36.1116

Mono-FREAK 12.3767 52.6017
Mono-GPUFREAK 9.41638 39.9897

Duo-KLT 14.3675 74.5584
Duo-FREAK 17.5211 94.4892

Duo-GPUFREAK 13.543 65.2674
Stereo-KLT 14.6614 93.2688

Stereo-FREAK 17.7651 98.9529
Stereo-GPUFREAK 13.5359 70.7481

this test, M was set to 5 and the cloning rate was fixed
to 5 Hz. Since same filter update budgets were maintained
for all systems, the filter execution times were comparable
(only 16-40% increase from mono to stereo). The duo and
stereo systems, however, both have the overhead of an
additional feature extraction and tracking step, followed by
stereo matching (for the stereo system). Thus, their image-
processing frontends consume most of the computational
resources making their overall time almost double of the
mono system. The image-processing frontend, however, can
be offloaded to special-purpose hardware (e.g., Movidius
VPU [24], Hexagon DSP [25]), in which case the gain in
performance from mono to stereo will be realized with only
minimal processing overhead.

I. Comparison with OKVIS and ORB-SLAM2

Fig. 7 compares the performance of the proposed stereo
system (with the FREAK-matching frontend) against two
state-of-the-art stereo SLAM systems: i) OKVIS [13] and
ii) ORB-SLAM2 [14]. For the default configuration of [13]
(maximum 400 keypoints, 5 keyframes, 3 most current
frames), the median RMSE (% over distance travelled) on
the MAV datasets was 0.21%, where the proposed algo-
rithm (maximum 400 keypoints, window size 5) resulted
in a median RMSE of 0.12%. For the datasets used in
this paper, however, the difference was significantly larger:
1.62% median RMSE in OKVIS vs. 0.31% in ours. Since
our datasets are mostly exploration type, OKVIS needs to
select more frequent keyframes, causing shorter baselines
and hence lower accuracy. In terms of computation time the
difference is more pronounced: Our algorithm (for fairness
we compare the non-CUDA frontend) performs 19.05 times
(452.81 ms vs. 23.77 ms per frame, on MAV datasets) to 5.49
times (180.94 ms vs. 32.98 ms per frame, on our datasets)
faster than OKVIS on the Jetson TK1. These timing results
preclude the use of OKVIS on mobile processors, while our



Fig. 7. Accuracy comparison with OKVIS and ORB-SLAM2.

proposed stereo system is capable of running in real-time at
10 Hz.

ORB-SLAM2, on the other hand, fails (loses track and
fails to re-localize or re-localizes with a wrong loop-closure)
in most of our long datasets (works only in 2 out of 5). It
also performs worse in the fast-motion and MAV-VICON
datasets. Only in the medium-scale MAV-MH datasets
ORB-SLAM2 takes advantage of the loop-closures and
and performs better than our algorithm. Processing these
loop-closures and running a parallel bundle adjustment
thread, however, costs ORB-SLAM2 in processing time. On
Jetson TK1 it takes around 174 ms per frame, which is 5-7
times slower than our algorithm.

VII. CONCLUSIONS

This paper presents a two-camera extension and analysis
of the SR-ISWF [6] for high-precision, real-time (up to
10 Hz cloning rate on mobile ARM processors) VINS. In
particular, we provided a detailed comparison between the
mono, duo, and stereo systems, along with a theoretical
explanation of the superior performance of stereo over duo.
Additionally, we assessed the robustness of different image-
processing frontends and the importance of feature-drift
over track-length. Moreover, we showed that descriptor-
matching-based frontends are more robust than KLT-based,
especially in challenging scenes and motion profiles. Also,
we showed that although for regular scenes (with longer
track lengths) a larger optimization window-size increases
the estimation accuracy, for shorter tracks (due to challenging
scenes or motions, or from the FREAK-matching frontend)
both mono and stereo systems perform better with a smaller
window size. Furthermore, for stereo systems, we also pre-
sented a novel outlier rejection strategy and an alternative
extrinsic representation. Lastly, we demonstrated that the
proposed stereo system outperforms OKVIS [13] and the
ORB-SLAM2 [14] both in terms of accuracy and processing
efficiency.
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