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Abstract
In this technical report, we briefly describe the relationship between the 2pt [1], P3P [2] and 5pt [3] solvers; and

the efficient solver for N(= 2, 3) views bundle adjustments (BA) in the square root information domain.

1 The 2pt/P3P/5pt solvers
Without loss of generality, we will use {C1}, {C2}, {C3} as a generic frames, indicating 3 distinct views, without
referring explicitly to any of {G}, {Ck}, {M}. The geometric constraint between 2 cameras C1 and C2 viewing the
same feature fi is described as: [

C1fi
1

]
=

[
R(C1qC2

) C1tC2

0 1

] [
C2fi

1

]
(1)

where C1f and C2f are the 3D feature positions with respect to C1 and C2. When 3 pairs of 3D-2D correspondences
satisfying eq. (1) are given, i.e., C1f and its corresponding bearing vector C2bfi =

C2 fi
||C2 fi|| in the second image, we

employ the P3P RANSAC to determine C1RC2
and C1tC2

.
When only 2D-2D correspondences are available, satisfying eq. (1) are given, we can form the well-known epipolar

constraints:
C1bTfiR(C1qC2

)bC1tC2
×cC2bfi = 0 (2)

Then, given 5 pairs of points, we can obtain C1RC2
and C1tC2

up to scale using the 5pt RANSAC.
When the baseline is small, i.e. C1tC2

≈ 0 , we can approximate eq. (1) as
C1fi = R(δq⊗ C1qC2

)C2fi (3)

where translation is considered as rotational noise. Given 2 pairs of correspondences satisfying eq. (3), we can compute
C1qC2

using the 2 pairs of 2pt RANSAC.

2 Inverse-depth robust 2-view BA
After C1RC2

and C1tC2
are found, we follow the outline of [1] to perform 2-view reconstruction. We begin by

representing the features with the inverse-depth parameterization such that

Cfi =
1

λi

αiβi
1

 (4)

Additionally, given that we have the camera intrinsic parameters, we define Ciz as homogeneous coordinate of the
3D feature i in image Ck Next, we seek to find the optimal solution

y =
[
C2qT

C1

C2tT
C1

C1
[
αi βi λi

]
i=1,2,...,n

]T
(5)

2



that minimizes the total reprojection error:

C(y) =

n∑
i=1

(ρ(‖C1zi −Π(C1fi)‖) + ρ(‖C2zi −Π(C1fi)‖)) (6)

=

n∑
i=1

(
ρ(

∥∥∥∥C1zi −
[

C1αi
C1βi

]∥∥∥∥) + ρ(

∥∥∥∥∥∥C2zi −Π

C2RC1

C1αi
C1βi

1

+ λi
C2tC1

∥∥∥∥∥∥)

)
(7)

=

n∑
i=1

(ρ(C1ei) + ρ(C2ei)) (8)

where ρ(e) is the Huber robust cost function

ρ(e) =

{
1
2e

2, e ≤ σp
σp|e| − 1

2e
2, e > σp

(9)

The jacobian corresponding to each feature is:

Jfi =

[
s1I 0

s2Jfi1 s2Jfi2

]
(10)

where

Jfi1 = C2RC1(1:2,1:2) −
1

C2zi

[
C2xi
C2yi

]
C2RC1(3,1:2)

Jfi2 = C2tC1(1:2) −
C2tC1(3)

C2zi

[
C2xi
C2yi

]
C2xi

C2yi
C2zi

 = C2RC1

αiβi
1

+ λi
C2tC1

and s1 and s2 are computed as weighting factors as:

sj =

{
1, Cjei ≤ σp√

σp

|Cj ei|
, Cjei > σp

(11)

The analytical closed form solution of the left null space of each feature’s Jacobian is:

uTfi = normalize(
[[
−Jfi1 (2) Jfi2 (1)

]
s2Jfi1

[
−s1Jfi2 (2) s1Jfi2 (1)

]]
) (12)

and the Jacobian of the pose for each feature is defined as

J(2)
ri = J

(2)
Π

bC2RC1

αiβi
1

 ×c −λit̂⊥⊥ λit̂
⊥

 (13)

where

J
(2)
Π = JΠ(

C2xi
C2yi
C2zi

) =
1

C2zi

[
1 0 −

C2xi
C2zi

0 1 −
C2yi
C2zi

]
(14)

We then apply Gauss-Newton with Jfi , J
(2)
ri , and ufi as described in [1]
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3 Inverse-depth robust 3-view BA
Once there exists a After getting the results from P3P, we can refine the estimate by employing a 3-view BA. To do so,
we extend the cost function given in Eqn. 6 to include the third view. We now seek to optimize over the vector

y =
[
C2qT

C1

C2tT
C1

C3qT
C1

C3pT
C1

C1
[
αi βi λi

]
i=1,2,...,n

]T
(15)

where C3pC1
is the translation between C3 and C1 with scale defined by the first 2 views. The updated cost function

is given by:

C(y) =

n∑
i=1

(ρ(C1ei) + ρ(C2ei) + ρ(C3ei)) (16)

with

C3ei =

∥∥∥∥∥∥C3zi −Π

C3RC1

αiβi
1

+ λi
C3pC1

∥∥∥∥∥∥ (17)

From the cost function, we compute the following Jacobians similarly to the previous section:

Jfi =

 s1I 0
s2J

(2)
fi1

s2J
(2)
fi2

s3J
(3)
fi1

s3J
(3)
fi2

 (18)

Jri =

J(2)
ri

J(3)
Π bC3RC1

αiβi
1

 ×c λiJ
(3)
Π

 (19)

J
(3)
Π = JΠ(C3RC1

αiβi
1

+ λi
C3pC1

) (20)

However, the left null space is now become a bit more complicated:

UT
fi =

[
−
[
u1

T
i u2

T
i

] [s2J
(2)
fi1

s3J
(3)
fi1

]
s1u

T
1i

s1u
T
2i

]
(21)

where

[
u1

T
i u2

T
i

]
=


J

(2)
fi1 (2) −J(2)

fi1 (1) 0 0

s3J
(3)
fi1 (1) 0 −s2J

(2)
fi1 (1) 0

s3J
(3)
fi1 (2) 0 0 −s2J

(1)
fi1 (1)

 (22)

Before executing the algorithm in [1], we will first need to find the orthonormal basis of the row space spanned in UT
fi

.
This can simply obtained through a Gram-Schmidt process.
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