Closed-form Solution for Inverse-depth Feature Marginalization for Robust two, three views Bundle Adjustments

Tien Do, Leo Neira and Stergios I. Roumeliotis
Department of Computer Science \& Engineering
University of Minnesota

Multiple Autonomous
Robotic Systems Laboratory
Technical Report
Number 2019-001
May 2019

Dept. of Computer Science \& Engineering
University of Minnesota
4-192 EE/CS Building
200 Union St. S.E.
Minneapolis, MN 55455
Tel: (612) 625-2217
Fax: (612) 625-0572
URL: http://mars.cs.umn.edu/

Closed-form Solution for Inverse-depth Feature Marginalization for Robust two, three views Bundle Adjustments

Tien Do, Leo Neira and Stergios I. Roumeliotis
Department of Computer Science \& Engineering University of Minnesota
Multiple Autonomous Robotic Systems Laboratory, TR-2019-001

May 2019

Abstract

In this technical report, we briefly describe the relationship between the 2pt [1], P3P [2] and 5pt [3] solvers; and the efficient solver for $N(=2,3)$ views bundle adjustments (BA) in the square root information domain.

1 The 2pt/P3P/5pt solvers

Without loss of generality, we will use $\left\{C_{1}\right\},\left\{C_{2}\right\},\left\{C_{3}\right\}$ as a generic frames, indicating 3 distinct views, without referring explicitly to any of $\{G\},\left\{C_{k}\right\},\{M\}$. The geometric constraint between 2 cameras C_{1} and C_{2} viewing the same feature \mathbf{f}_{i} is described as:

$$
\left[\begin{array}{c}
{ }^{C_{1}} \mathbf{f}_{i} \tag{1}\\
1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{R}\left({ }^{C_{1}} \mathbf{q}_{C_{2}}\right) & { }^{C_{1}} \mathbf{t}_{C_{2}} \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
C_{2} \mathbf{f}_{i} \\
1
\end{array}\right]
$$

where ${ }^{C_{1}} \mathbf{f}$ and ${ }^{C_{2}} \mathbf{f}$ are the 3D feature positions with respect to C_{1} and C_{2}. When 3 pairs of 3D-2D correspondences satisfying eq. (1) are given, i.e., ${ }^{C_{1}} \mathbf{f}$ and its corresponding bearing vector ${ }^{C_{2}} \mathbf{b}_{f_{i}}=\frac{C^{C_{2}} \mathbf{f}_{i}}{\left\|^{C_{2}} \mathbf{f}_{i}\right\|}$ in the second image, we employ the P3P RANSAC to determine ${ }^{C_{1}} \mathbf{R}_{C_{2}}$ and ${ }^{C_{1}} \mathbf{t}_{C_{2}}$.

When only 2D-2D correspondences are available, satisfying eq. 11 are given, we can form the well-known epipolar constraints:

$$
\begin{equation*}
{ }^{C_{1}} \mathbf{b}_{f_{i}}^{T} R\left({ }^{C_{1}} \mathbf{q}_{C_{2}}\right)\left\lfloor^{C_{1}} \mathbf{t}_{C_{2}} \times\right\rfloor^{C_{2}} \mathbf{b}_{f_{i}}=0 \tag{2}
\end{equation*}
$$

Then, given 5 pairs of points, we can obtain ${ }^{C_{1}} \mathbf{R}_{C_{2}}$ and ${ }^{C_{1}} \mathbf{t}_{C_{2}}$ up to scale using the 5pt RANSAC.
When the baseline is small, i.e. ${ }^{C_{1}} \mathbf{t}_{C_{2}} \approx 0$, we can approximate eq. (1) as

$$
\begin{equation*}
{ }^{C_{1}} \mathbf{f}_{i}=R\left(\delta \mathbf{q} \otimes{ }^{C_{1}} \mathbf{q}_{C_{2}}\right)^{C_{2}} \mathbf{f}_{i} \tag{3}
\end{equation*}
$$

where translation is considered as rotational noise. Given 2 pairs of correspondences satisfying eq. 3), we can compute ${ }^{C_{1}} \mathbf{q}_{C_{2}}$ using the 2 pairs of 2pt RANSAC.

2 Inverse-depth robust 2-view BA

After ${ }^{C_{1}} \mathbf{R}_{C_{2}}$ and ${ }^{C_{1}} \mathbf{t}_{C_{2}}$ are found, we follow the outline of [1] to perform 2-view reconstruction. We begin by representing the features with the inverse-depth parameterization such that

$$
{ }^{C} \mathbf{f}_{i}=\frac{1}{\lambda_{i}}\left[\begin{array}{c}
\alpha_{i} \tag{4}\\
\beta_{i} \\
1
\end{array}\right]
$$

Additionally, given that we have the camera intrinsic parameters, we define ${ }^{C i \mathbf{z}}$ as homogeneous coordinate of the 3D feature i in image C_{k} Next, we seek to find the optimal solution

$$
\mathbf{y}=\left[\begin{array}{llll}
{ }^{C_{2}} \mathbf{q}_{C_{1}}^{T} & { }^{C_{2}} \mathbf{t}_{C_{1}}^{T} & { }^{C_{1}}\left[\begin{array}{lll}
\alpha_{i} & \beta_{i} & \lambda_{i}
\end{array}\right]_{i=1,2, \ldots, n} \tag{5}
\end{array}\right]^{T}
$$

that minimizes the total reprojection error:

$$
\begin{align*}
\mathbb{C}(\mathbf{y}) & =\sum_{i=1}^{n}\left(\rho\left(\left\|{ }^{C_{1}} \mathbf{z}_{i}-\Pi\left({ }^{C_{1}} \mathbf{f}_{i}\right)\right\|\right)+\rho\left(\left\|{ }^{C_{2}} \mathbf{z}_{i}-\Pi\left({ }^{C_{1}} \mathbf{f}_{i}\right)\right\|\right)\right) \tag{6}\\
& =\sum_{i=1}^{n}\left(\rho\left(\| \|^{C_{1}} \mathbf{z}_{i}-\left[\begin{array}{c}
C_{1} \\
C_{i} \\
{ }^{C_{1}} \beta_{i}
\end{array}\right] \|\right)+\rho\left(\left\|{ }^{C_{2}} \mathbf{z}_{i}-\Pi\left({ }^{C_{2}} \mathbf{R}_{C_{1}}\left[\begin{array}{c}
C_{1} \alpha_{i} \\
C_{1} \beta_{i} \\
1
\end{array}\right]+\lambda_{i}{ }^{C_{2}} \mathbf{t}_{C_{1}}\right)\right\|\right)\right) \tag{7}\\
& =\sum_{i=1}^{n}\left(\rho\left({ }^{C_{1}} e_{i}\right)+\rho\left({ }^{C_{2}} e_{i}\right)\right) \tag{8}
\end{align*}
$$

where $\rho(e)$ is the Huber robust cost function

$$
\rho(e)=\left\{\begin{array}{l}
\frac{1}{2} e^{2}, e \leq \sigma_{p} \tag{9}\\
\sigma_{p}|e|-\frac{1}{2} e^{2}, e>\sigma_{p}
\end{array}\right.
$$

The jacobian corresponding to each feature is:

$$
\mathbf{J}_{f_{i}}=\left[\begin{array}{cc}
s_{1} \mathbf{I} & \mathbf{0} \tag{10}\\
s_{2} \mathbf{J}_{f_{i_{1}}} & s_{2} \mathbf{J}_{f_{i_{2}}}
\end{array}\right]
$$

where

$$
\begin{aligned}
\mathbf{J}_{f_{i_{1}}} & ={ }^{C_{2}} \mathbf{R}_{C_{1}(1: 2,1: 2)}-\frac{1}{{ }_{2} z_{i}}\left[\begin{array}{c}
C_{2} x_{i} \\
{ }^{C_{2}} y_{i}
\end{array}\right]{ }^{C_{2}} \mathbf{R}_{C_{1}(3,1: 2)} \\
\mathbf{J}_{f_{i_{2}}} & ={ }^{C_{2}} \mathbf{t}_{C_{1}(1: 2)}-\frac{{ }_{2} \mathbf{t}_{C_{1}(3)}}{{ }^{C_{2}} z_{i}}\left[\begin{array}{c}
C_{2} \\
C_{i} \\
{ }^{C_{2}} y_{i}
\end{array}\right] \\
{\left[\begin{array}{c}
{ }^{C_{2}} x_{i} \\
{ }_{2}{ }_{2} \\
{ }^{C_{2}} z_{i}
\end{array}\right] } & ={ }^{C_{2}} \mathbf{R}_{C_{1}}\left[\begin{array}{c}
\alpha_{i} \\
\beta_{i} \\
1
\end{array}\right]+\lambda_{i}{ }^{C_{2}} \mathbf{t}_{C_{1}}
\end{aligned}
$$

and s_{1} and s_{2} are computed as weighting factors as:

$$
s_{j}=\left\{\begin{array}{l}
1,{ }^{C_{j}} e_{i} \leq \sigma_{p} \tag{11}\\
\sqrt{\frac{\sigma_{p}}{\left|{ }^{C_{j}} e_{i}\right|}}, \quad, \quad{ }^{C_{j}} e_{i}>\sigma_{p}
\end{array}\right.
$$

The analytical closed form solution of the left null space of each feature's Jacobian is:

$$
\begin{equation*}
\mathbf{u}_{f_{i}}^{T}=\operatorname{normalize}\left(\left[\left[-\mathbf{J}_{f_{i_{1}}(2)} \quad \mathbf{J}_{f_{i_{2}}(1)}\right] s_{2} \mathbf{J}_{f_{i_{1}}} \quad\left[-s_{1} \mathbf{J}_{f_{i_{2}}(2)} \quad s_{1} \mathbf{J}_{f_{i_{2}}(1)}\right]\right]\right) \tag{12}
\end{equation*}
$$

and the Jacobian of the pose for each feature is defined as

$$
\mathbf{J}_{r_{i}}^{(2)}=\mathbf{J}_{\Pi}^{(2)}\left[\left\lfloor{ }^{C_{2}} \mathbf{R}_{C_{1}}\left[\begin{array}{c}
\alpha_{i} \tag{13}\\
\beta_{i} \\
1
\end{array}\right] \times\right\rfloor \quad-\lambda_{i} \hat{\mathbf{t}}^{\perp \perp} \quad \lambda_{i} \hat{\mathbf{t}}^{\perp}\right]
$$

where

$$
\mathbf{J}_{\Pi}^{(2)}=\mathbf{J}_{\Pi}\left(\left[\begin{array}{l}
{ }^{C_{2}} x_{i} \tag{14}\\
C_{2} \\
{ }_{2} \\
C_{2} \\
{ }_{2} \\
z_{i}
\end{array}\right]\right)=\frac{1}{C_{2} z_{i}}\left[\begin{array}{ccc}
1 & 0 & -\frac{C_{2} x_{i}}{C_{2} z_{i}} \\
0 & 1 & -\frac{C_{2} y_{i}}{C_{2} z_{i}}
\end{array}\right]
$$

We then apply Gauss-Newton with $\mathbf{J}_{f_{i}}, \mathbf{J}_{r_{i}}^{(2)}$, and $\mathbf{u}_{f_{i}}$ as described in [1]

3 Inverse-depth robust 3-view BA

Once there exists a After getting the results from P3P, we can refine the estimate by employing a 3-view BA. To do so, we extend the cost function given in Eqn. 6to include the third view. We now seek to optimize over the vector

$$
\mathbf{y}=\left[\begin{array}{lllll}
{ }^{C_{2}} \mathbf{q}_{C_{1}}^{T} & { }^{C_{2}} \mathbf{t}_{C_{1}}^{T} & { }^{C_{3}} \mathbf{q}_{C_{1}}^{T} & { }^{C_{3}} \mathbf{p}_{C_{1}}^{T} & { }^{C_{1}}\left[\begin{array}{lll}
\alpha_{i} & \beta_{i} & \lambda_{i}
\end{array}\right]_{i=1,2, \ldots, n} \tag{15}
\end{array}\right]^{T}
$$

where ${ }^{C_{3}} \mathbf{p}_{C_{1}}$ is the translation between C_{3} and C_{1} with scale defined by the first 2 views. The updated cost function is given by:

$$
\begin{equation*}
\mathbb{C}(\mathbf{y})=\sum_{i=1}^{n}\left(\rho\left({ }^{C_{1}} e_{i}\right)+\rho\left({ }^{C_{2}} e_{i}\right)+\rho\left({ }^{C_{3}} e_{i}\right)\right) \tag{16}
\end{equation*}
$$

with

$$
{ }^{{ }_{3}} e_{i}=\left\|{ }^{C_{3}} \mathbf{z}_{i}-\Pi\left({ }^{C_{3}} \mathbf{R}_{C_{1}}\left[\begin{array}{c}
\alpha_{i} \tag{17}\\
\beta_{i} \\
1
\end{array}\right]+\lambda_{i}{ }^{C_{3}} \mathbf{p}_{C_{1}}\right)\right\|
$$

From the cost function, we compute the following Jacobians similarly to the previous section:

$$
\begin{align*}
\mathbf{J}_{f_{i}} & =\left[\begin{array}{cc}
s_{1} \mathbf{I} & \mathbf{0} \\
s_{2} \mathbf{J}_{f_{i_{1}}}^{(2)} & s_{2} \mathbf{J}_{f_{i_{2}}}^{(2)} \\
s_{3} \mathbf{J}_{f_{i_{1}}}^{(3)} & s_{3} \mathbf{J}_{f_{i_{2}}}^{(3)}
\end{array}\right] \tag{18}\\
\mathbf{J}_{r_{i}} & =\left[\begin{array}{lll}
\mathbf{J}_{r_{i}}^{(2)} & \left.\left[\begin{array}{cc}
\mathbf{J}_{\Pi}^{(3)} & \left\lfloor{ }^{C_{3}} \mathbf{R}_{C_{1}}\left[\begin{array}{c}
\alpha_{i} \\
\beta_{i} \\
1
\end{array}\right] \times\right\rfloor
\end{array} \lambda_{i} \mathbf{J}_{\Pi}^{(3)}\right]\right] \\
\mathbf{J}_{\Pi}^{(3)} & =\mathbf{J}_{\Pi}\left({ }^{\left(C_{3}\right.} \mathbf{R}_{C_{1}}\left[\begin{array}{c}
\alpha_{i} \\
\beta_{i} \\
1
\end{array}\right]+\lambda_{i}{ }^{C_{3}} \mathbf{p}_{C_{1}}\right)
\end{array}, l\right. \tag{19}
\end{align*}
$$

However, the left null space is now become a bit more complicated:

$$
\mathbf{U}_{f_{i}}^{T}=\left[\begin{array}{ll}
-\left[\begin{array}{ll}
\mathbf{u}_{1}^{T} & \mathbf{u}_{2}^{T}
\end{array}\right]\left[\begin{array}{l}
s_{2} \mathbf{J}_{f_{i_{1}}}^{(2)} \\
s_{3} \mathbf{J}_{f_{i_{1}}}^{(3)}
\end{array}\right] \quad s_{1} \mathbf{u}_{1_{i}}^{T} & s_{1} \mathbf{u}_{2_{i}}^{T} \tag{21}
\end{array}\right]
$$

where

$$
\left[\begin{array}{ll}
\mathbf{u}_{1}^{T} & \mathbf{u}_{2}^{T}
\end{array}\right]=\left[\begin{array}{cccc}
\mathbf{J}_{f_{i_{1}}(2)}^{(2)} & -\mathbf{J}_{f_{i_{1}(1)}}^{(2)} & 0 & 0 \tag{22}\\
s_{3} \mathbf{J}_{f_{i_{1}}(1)}^{(3)} & 0 & -s_{2} \mathbf{J}_{f_{i_{1}(1)}}^{(2)} & 0 \\
s_{3} \mathbf{J}_{f_{i_{1}}(2)}^{(3)} & 0 & 0 & -s_{2} \mathbf{J}_{f_{i_{1}}(1)}^{(1)}
\end{array}\right]
$$

Before executing the algorithm in [1], we will first need to find the orthonormal basis of the row space spanned in $\mathbf{U}_{f_{i}}^{T}$. This can simply obtained through a Gram-Schmidt process.

References

[1] T. Do, L. C. Carrillo-Arce, and S. I. Roumeliotis. "High-speed autonomous quadrotor navigation through visual and inertial paths". The International Journal of Robotics Research, 38(4):486-504, Aug. 2019.
[2] T. Ke and S. Roumeliotis. "An efficient algebraic solution to the perspective-three-point problem". In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7225-7233, Honolulu, HI, Jul. 21-26 2017.
[3] H. Stewenius, C. Engels, and D. Nistér. "Recent developments on direct relative orientation". ISPRS Journal of Photogrammetry and Remote Sensing, 60(4):284-294, Jun. 2006.

