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Abstract

In this technical report, we briefly describe the relationship between the 2pt [1], P3P [2] and 5pt [3] solvers; and
the efficient solver for N(= 2, 3) views bundle adjustments (BA) in the square root information domain.

1 The 2pt/P3P/5pt solvers

Without loss of generality, we will use {C1}, {C2}, {Cs} as a generic frames, indicating 3 distinct views, without
referring explicitly to any of {G},{Cy}, {M}. The geometric constraint between 2 cameras C; and Cy viewing the

same feature f; is described as:
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where “1f and “2f are the 3D feature positions with respect to C; and C5. When 3 pairs of 3D-2D correspondences
satisfying eq. (I) are given, i.e., “*f and its corresponding bearing vector “2by, = ngia\l in the second image, we
employ the P3P RANSAC to determine “* R, and “*t, .

When only 2D-2D correspondences are available, satisfying eq. (I)) are given, we can form the well-known epipolar
constraints:

‘bt R(“'qc, ) “te, x]2by, =0 ()

Then, given 5 pairs of points, we can obtain “* R, and “*t, up to scale using the 5pt RANSAC.

When the baseline is small, i.e. “*t., ~ 0, we can approximate eq. () as

“f; = R(6q ® “'qc, ) f; 3)

where translation is considered as rotational noise. Given 2 pairs of correspondences satisfying eq. (3), we can compute
“1q, using the 2 pairs of 2pt RANSAC.

2 Inverse-depth robust 2-view BA

After “*R,, and “'t., are found, we follow the outline of [1] to perform 2-view reconstruction. We begin by
representing the features with the inverse-depth parameterization such that

1|
“fi=+ |8 )
Ai 1
Additionally, given that we have the camera intrinsic parameters, we define <**
3D feature ¢ in image C, Next, we seek to find the optimal solution

as homogeneous coordinate of the
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that minimizes the total reprojection error:
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where p(e) is the Huber robust cost function
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The jacobian corresponding to each feature is:

J, — 811 0
I sQinl 82in2

where

]. cQ{I,',L'
inl = CQRCI(1;2,1:2) - U |:Cz :| c2]3,01(3,1:2)

2 Yi
Ca2t Co .
c c1(3) T
szz — 2t01(1:2) - 0221'1' |:Czyi:|
“2x; Q;
“y; :CQRCI Bi +/\i02tcl
Caz; 1

and s; and so are computed as weighting factors as:

C
17 T€4 S Op
Sj =

Tp C.;
/ J e
el e; > 0p

The analytical closed form solution of the left null space of each feature’s Jacobian is:
u}; = normalize([[~Jy, @ Jp,@] 5235, [=s1J5,@ 513, m]])

and the Jacobian of the pose for each feature is defined as
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We then apply Gauss-Newton with J¢,, J f.f), and uy, as described in [1]]
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3 Inverse-depth robust 3-view BA

Once there exists a After getting the results from P3P, we can refine the estimate by employing a 3-view BA. To do so,
we extend the cost function given in Eqn. [6]to include the third view. We now seek to optimize over the vector
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where “3p,, is the translation between C3 and C; with scale defined by the first 2 views. The updated cost function

is given by:
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From the cost function, we compute the following Jacobians similarly to the previous section:
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However, the left null space is now become a bit more complicated:
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Before executing the algorithm in [[L], we will first need to find the orthonormal basis of the row space spanned in U}l .
This can simply obtained through a Gram-Schmidt process.
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