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This Techreport derives the Jacobian needed for error conversion when changing from Euler angles to
quaternion based attitude representation. When applying the following results, it is important to pay careful
attention to the super- and subscripts, i.e., the convention used in this report to express the global frame
with respect to the local frame.

1 Rotational Matrix and Quaternions

As shown in [2], the rotational matrix L
GC can be expressed in terms of the corresponding quaternion

q̄ =
[
q q4

]T as
L
GC(q̄) =

(
2q2

4 − 1
)
I3×3 − 2q4bq×c+ 2qqT (1)

where bq×c denotes the skew-symmetric cross-product matrix

bq×c =




0 −q3 q2

q3 0 −q1

−q2 q1 0


 (2)

Note the following property of a skew-symmetric matrix

Cba×cCT = bCa×c (3)

where a is a vector and C a rotational matrix.
In case of only a very small rotation δq̄, we can use the small angle approximation to simplify Eq. (1).

We can write the quaternion describing a small rotation as

δq̄ =
[

δq
δq4

]
(4)

=
[
k̂ sin(δθ/2)
cos(δθ/2)

]
(5)

≈
[

1
2δθ
1

]
(6)

leading to the following expression for the corresponding rotational matrix

L
GC(δq̄) ≈ I3×3 − bδθ×c (7)

Note that δθ is the product of the infinitesimal rotation angle δθ and the axis of rotation k̂.
Using a multiplicative error model for the quaternion, we can decompose the true orientation into a

quaternion product of error quaternion δq̄ and estimated quaternion L̂
G

ˆ̄q

L
Gq̄ = L

L̂
δq̄ ⊗ L̂

G
ˆ̄q (8)
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As a consequence of the chosen quaternion convention, this entails

L
GC(q̄) = L

GC(δq̄ ⊗ ˆ̄q) (9)

= L
L̂
C(δq̄) · L̂

GC(ˆ̄q) (10)

= (I3×3 − bδθ×c) · L̂
GC(ˆ̄q) (11)

2 Rotational Matrix and Euler Angles

The rotational matrix can be parametrized by a three angles (the so-called Euler angles) describing a sequence
of rotations.

In its most general form, this can be written as

L
GC(α, β, γ) = C(α, î) ·C(β, ĵ) ·C(γ, k̂) (12)

where α, β, γ are the angles of rotation and î, ĵ, k̂ denote the unit vectors along the corresponding axes of
rotation. For a more detailed overview, please refer to [1].

Employing Eqs. (3) and (11), and neglecting second order terms, we can decompose Eq. (12) in a product
of error term and estimated rotational matrix as

L
GC(α, β, γ) = (I3×3 − bδα̂i×c) ·C(α̂, î) · (I3×3 − bδβ ĵ×c) ·C(β̂, ĵ) · (I3×3 − bδγk̂×c ·C(γ̂, k̂) (13)

= (I3×3 − bδα̂i×c) ·
(
I3×3 −C(α̂, î)bδβ ĵ×cC(α̂, î)T

)
·C(α̂, î) ·C(β̂, ĵ)

· (I3×3 − bδγk̂×c ·C(γ̂, k̂) (14)

' (I3×3 − bδα̂i×c − bC(α̂, î)δβ ĵ×c) ·
(
I3×3 −C(α̂, î)C(β̂, ĵ)bδγk̂×cC(β̂, ĵ)T C(α̂, î)T

)

·C(α̂, î) ·C(β̂, ĵ) ·C(γ̂, k̂) (15)

'
(
I3×3 − bδα̂i×c − bC(α̂, î)δβ ĵ×c − bC(α̂, î) ·C(β̂, ĵ)δγk̂×c

)
·C(α̂, î) ·C(β̂, ĵ) ·C(γ̂, k̂)

(16)

=
(
I3×3 − bδα̂i−C(α̂, î)δβ ĵ−C(α̂, î) ·C(β̂, ĵ)δγk̂×c

)
·C(α̂, î) ·C(β̂, ĵ) ·C(γ̂, k̂) (17)

Comparison with Eq. (11) reveals that

δθ = δα̂i + C(α̂, î)δβ ĵ + C(α̂, î) ·C(β̂, ĵ)δγk̂ (18)

= H




δα
δβ
δγ


 (19)

where
H =

[̂
i C(α̂, î)̂j C(α̂, î)C(β̂, ĵ)k̂

]
(20)

is the Jacobian.
The covariance can then be converted as

Pδθ = HPδα,δβ,δγHT (21)

3 Monte Carlo Simulation

The results for covariance transformation have been verified through Monte Carlo simulations. Fig. 3 shows
exemplary results for the parameters given in Tab. 1. The results show good correspondence between the
covariance computed by Eq. (21) and the sample covariance.
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Figure 1: Monte Carlo error distribution. Overlay of sample covariance and theoretically determined covari-
ance.

TR-2005-004 3



Quantity Value

No. of samples 10000

î [ 0 0 1 ]T

ĵ [ 0 1 0 ]T

k̂ [ 1 0 0 ]T

α π/3

β π/4

γ −π/5

Pδα,δβ,δγ .0072 rad2 · I3×3

Table 1: Monte Carlo Parameters

References

[1] J. J. Craig. Introduction to robotics: mechanics and control. Pearson Prentice Hall, Upper Saddle River,
New Jersey, 3 edition, 2005.

[2] N. Trawny and S. I. Roumeliotis. Indirect Kalman filter for 3D attitude estimation. Technical Report
2005-002, University of Minnesota, Dept. of Comp. Sci. & Eng., Jan. 2005.

TR-2005-004 4


